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The research being repoited was directed to the alleviation of the shortcomings
referred to above. The following specific results have been obtained. For any 2-D discrete
first quadrant quarter-plane causal linear shift-variant (LSV) system, whose impulse res-
ponse is a K-th order degenerate sequence, a K-th order state-space model was obtained.
This model is recursive and is based on a three-term recurrence formula relating any point
in the state-space to its three closest neighboring points and the current input. The
state-space model was extended in order to model 2-D discrete LSV systems with support on a
causality cone. Subsequently, the 2-D quarter-plane causal and weakly causal discrete
models were generalized to the n-D(n>2) case. The resulting state-space models are recur-
sive and are based on a (2n-l)-points recurrence formula, which for the causal case uses the
(2n-l)-closest neighboring points in addition to the input in order to compute any current
output state. For the weakly causal case, the (2n-l) computed outputs required are not, in
general, the closest neighbors to the output presently being computed. Conditions for the
existence of a 2-D state-space model for the inverse system were obtained and with these
conditions satisfied, a state-space model of the inverse system is readily derivable from
the original one. Models for the 2-D LSV system and its inverse can be used to perform
analysis and deconvolution problems very efficiently. This was substantiated from derived
expressions for space-time computational complexities.

Examples of physically motivated applications making use of the theoretical results
developed have been worked out. These applications include effects of 1-D LSV motion blur
and the blurring due to Seidel aberration of a lens; in particular, the 2-D LSV coma aber-
ration was studied in detail. The reconstruction of the original object from the LSV
blurred image was carried out successfully by means of the state-space model for the int
verse system. For the construction of the state-space model, the impulse responses of t.-
blurring phenomena were approximated in 4 degenerate form via series expansion using
orthogonal functions.

The problem of restoring images degraded by phenomena, which can be modeled by linear
shift-invariant systems, has been discussed above. Sometimes, the degrading phenomena may
not be accurately modeled by systems that are restricted to be linear. In such cases, the
incorporation of the second-order term of a Volterra series (characterizing the input/output
behavior of the nonlinear system), which forms a class of bilinear systems, improves sub-
stautidlly the measure of adequacy for the model. This type of bilinear syst~em occurs in
imaging through turbulent atmosphere, coherent imaging through systems with time-varying
pupils, etc. Recent research results on bilinearly distorted images are available based on
finite impulse response linear digital filtering and Bayesian methods. Here, additional
methods have been investigated for restoring images, which are distorted by a system that is
describable by the second-order term of the Volterra series. When the blurring phenomenon is
nonlinear and can be modeled either by a shift-invariant of shift-variant bilinear system,
the data restoration problem can be most conveniently formulated as a special system of
linear equations with nonnegative coefficients whose solution is required to satisfy con-
straints like nonnegativity in addition to being factorable with the factors having a certain
characterizing property. An algorithm implementing this objective along with another
important alternative applicable to a specialized model are discussed in the research report.
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b. Research Objectives

To a great extent the techniques for analysis and res-

toration of images has been developed under the assumption

that the system is linear shift-invariant (LSI). These

techniques are successful in some cases because a system

which is diffraction-limited or a system whose object plane

undergoes uniform linear motion perpendicular to the system

reference axis does indeed satisfy these assumptions.

However, LSI systems are singled out for study main.y be-

cause of the widespread understanding of the Fourier Trans-

form theory along with well-known fast algorithms for its

implementation. In comparison with LSI systems, very little

work has been done on linear shift-variant (LSV)systems. Most

of the research on two dimensional (2-D) LSV systems has been

done on restoration techniques by means of coordinate trans-

formations. This technique, decomposes the LSV system into a

distortion of the input plane followed by a shift-invariant

operation and terminated by a distortion of the output plane.

Essentially, the shift-variant problem is transformed into a

shift-invariant one and the deconvolution or inverse filtering

is done with the well-known shift-invariant methods for this

purpose. The main drawback of image restoration by coordinate

transformation is that it can only be applied to a limited class

of LSV systems. For one dimensional (l-D) LSV systems, there

has been some research activity and most of the work has to do

with the reconstruction of motion degraded images. Besides the

already mentioned approaches to image restoration based on
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coordinate transformations, some methods have used I-D state-space models for

a class of LSV systems. At present the technique for analysis and deconvolu-

tion of LSV systems are either applicable to the I-D case or to a very restric-

tive class of 2-D LSV systems. It is important to note that the characteriza-

tion of a LSV system by means of the superposition integral or the superposi-

tion sum holds in general, but it is completely impractical for the analysis

and the deconvolution of LSV systems. Therefore, we can conclude that there

is a great need for an efficient and convenient model for LSV systems which

will permit the analysis and deconvolution in a simple form.

One of the primary objectives of this research has been to provide not

only a mathematical structure for the state-space modeling of discrete LSV sys-

tems but to apply this model to the problems of efficient analysis and decon-

volution of multidimensional systems. It is expected that the state-space

model will be useful in system analysis and synthesis. The state-space model

should be useful in solving the problem of deconvolution very efficiently. In

fact, for the noise-free case the deconvolution scheme developed from the state-

space model is considerably more efficient from space as well as time computa-

tional complexity standpoints than other techniques which are currently avail-

able.

A portion of the time for the proposed research was also devoted to the

approximation problem of specified 2-D linear shift-variant impulse responses

by K-th order degenerate approximants.

Several applications require the restoration of bilinearly degraded images.

For example, in coherent optical image processing, the bilinear term in the

Volterra series expansion plays an important role due to the nonlinear nature

of partially coherent image formation. The problem of restoration of images

distorted by nonlinear nonzero-spread systems, which appear quite frequently

in real world problems have not been systematically tackled. Therefore, portion
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of the research effort was directed to the development of algorithms for digital

restoration of bilinearly degraded images (shift-invariant as well as shift-

variant
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c. Details of Research Results Obtained

The primary outcomes of the research effort are in the following

two categories:

1. Linear shift-variant multidimensional systems.

2. Restoration of bilinearly degraded images.

Detailed documentation of results obtained in the above mentioned areas

are contained in the succeeding pages of this report.

I.I
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Chapter 5

LINEAR SHIFT-VARIANT MULTIDIMENSIONAL SYSTEMS

5.1 Introduction

The study of 1-D time-varying systems, now well-documented

in the literature, was motivated to a great extent by the

need to design adaptive control systems, where the parameters

of the controller are adjusted to counterbalance the fluctu-

ations in process dynamics stemming from changes in environ-

ment. For example, variations of flight conditions (including

flight speed) of supersonic aircrafts and missiles during rapid

ascent through the atmosphere introduce time-varying parameter

variations. In space flight, relevant problems that had to

be tackled included those [5.1] of transferring a space vehicle

from one orbit to another, rendezvous and interplanetary

guidance. The development of the rigid-body equations of

motion of artificial satellites requires accounting for cyclic

variations of inertial torques that occur as the vehicle

progresses in its orbit. Similarly, successful solution of the

satellite rendezvous problem requires dealing with the combined

complexity of both mass and orbital variations, for with

both the target and interceptor in orbit, the interceptor

must expend fuel-mass in maneuvering; further, the kinematics

of interceptor guidance introduce additional time-varying

parameters forcing the characterizing differential equations

to have '>cth periodic and aperiodic coefficients. Also of

interest is a class of problems which relate to the gyroscopic

stabilization of orbiting satellites. In circuit and systemrs
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theory specific applications concerned with the theory of

modulators, parametric amplifiers and harmonic generators use

linear circuits with periodically varying parameters [5.2].

The developed tools of multidimensional systems theory,

as documented in [5.3], provide scopes for considerable appli-

cations in a broad range of problems. However, over the last

few years, it is fair to say that the theory of linear

shift-invariant (LSI) two or more dimensional systems have

been well understood. However, with the increased activities

in the area of image processing (optical and digital) many

physical problems are charaterizable by a 2-D linear integral

operator,

g(x,y) . f f(u,v) h(x,y;u,v) dv
-00 -00

where g(x,y), f(x,y) are, respectively, the output and input

while h(x,y;u,v) is the system response at (x,y) to an unit

impulse applied at (u,v). The presence of additive noise in

the preceding input-output model of a physical process could

also be expected. In 1977, Goodman state that "the type of

coherent optical processing which is by far the least explored

to date is that of linear space-variant filtering" [5.4],

and the importance of overcoming this deficiency was realized

because space-variant processing is required in various

optical and digital data processing applications including

restoration of images degraded either by space-variant

aberrations or space-variant motion blur, restoration of radio-

graphs blurred by a space-variant source penumbra, restoration

of rotation blur of 2-D patterns where different objects
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suffer from different blur according to their distance from

the center of rotation and algo their angular positions [5.51,

and performance of particular transformations (like the Mellin

transform and Abel transform). Also, emerging applications in

areas like robotic vision, have necessitated the development

of techniques suitable for recognition patterns which may be

subjected to the effects of unknown rotation and scaling. One

such technique is based on the use of scaled transform (a

modified Fourier transform), which have been shown to be

equivalent to a class of linear shift-variant (LSV) filters,

referred to as the class of "form-invariant" filters [5.6].

Actually, the problem of 2-D images degraded by spatially

varying point spread functions has been tackled since about

the early seventies. Sawchuk [5.71 transformed the spatially

varying problem to a spatially invariant one via coordinate

transformations and as a result some generality in the approach

had to be sacrificed, especially with the presence of additive

noise. In that situation, however, statistics of the noise and

object random processes could change under a geometrical

coordinate transformation. The usual assumption of the minim=u

mean-square error estimation (MMSE) method is that these

statistics are jointly stationary, and this may not be valid

in many cases. Frieden [5.8] developed a positive (an incoherent

object scene is a spatial radiance distribution and cannot

be negative) restoring formula from a statistical communication

theory model of image formation by which the optimal restored

object from a set of candidate objects is required to obey a

principle of maximum entropy. Frieden's approach, though



5.17

The particular structure of the matrices in (5.34) to (5.36)

will allow us to perform the summation in (5.32) by means of

a (2k_-l)-point recursion. This recursion will be a gener-

alization to k-dimensions (k > 2) of the recursion in (5.10)

and the justification will be developed next. To do this,

the following definitions are, first, introduced.
k ii ik

Definition 5.3: The jZl (nj+l) row-vector k is

defined as

il i2...i k  i2i 3 -..ikk _ [20. •... O0 . . ] , (5.37)

-k 10 O...O0 kkl

T
(il+l)-th block position

from the right

k
where 0 is a .7 (n.+l) row-vector of zeros, there are n

j=2 J

such 0 vectors, and the position of the remaining nonzero

row-vector is indicated above. Furthermore, the (nk+l)
ik

row-vector is defined as

k  4 [0 0 ... 0 1 0 ... 0]. (5.38)

(ik+l)-th position from
the right

Definition 5.4: Zk(j) i sum of all (k distinct vectors
__ _ __ _ _ (.)

ii " " " ik 0 =
11.-. 2 kwith i = :0"

Ik w "or (z=l,2, .. ,k) and i1+i 2+...+ik=j.
1

Decfiition 5.: (j2u.o l k distinct vectors
_n A.kJJ ~
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where ai(n1 ,. .,nk) (i=l,2,...,K) and i(ml,..,mk) (i=1,2,...,

K) are, respectively, linearly independent functions of

(nl,n2,...,nk) and (ml,m 2 .... ,mk).

Substituting (5.30) in (5.29), after carrying out some

manipulations analogous to the ones in Section 5.2, we have

KY(nl, . . . , n k )  = i(nl ' .... n k )x i(nl, .... n k), (5.31)
i--i

where

xi(nl,..,nk) z ... z s(m l ,..,m k ) .u(ml,..,mk). (5. 3 2 )
mI=0 mk=0 3.

i=l,2,.. .,K

The expression in (5.32) can be written in matrix form

1k Bi ,k(l . , -u i-1,2,.. ,K, (5.33)

where 4 and uk are vectors of order ([(nl+l).(n 2+l)...

(nk+l)] x 1) obtained, respectively, by ordering the k-

dimensional arrays{xi (i l i 2 ,..., ik)}and{u(il,i 2 ,.. .,ik)}

( O,I,.. . ,nj;j=1,2, . . .k) by means of a lexicographic ordering,

described next. The element u(j 1 ,j 2 ,... ik ) occurs in row

k-l k-l
E i Tr (n,+, + 1) + (jk+'),

i=l z=i

for Jii0,1,...,n i , i=l,2,...,k, of the vector k A

similar lexicographical ordering is given to the elements

(x to form the vector 4, i1,2,...,K.

Bi,k (rL,..,nk) in (5.33) is a square matrix of order

((nI+l).(n 2 +l)... (nk+l)), given by

. . '



5.13

into its components and sirming over them in equation (5.9).

This derivation, even though simple, cannot be easily

extended to higher dimensions. In this section, the

particular structure of a matrix will be used to our advan-

tage in obtaining a k-D recursive model. First, this will

be done for the case when the impulse response sequence

has support in a positive cone and, subsequently, weakly

causal LSV systems will be tackled.

5.3.1 k-D positive Cone Causal State-Space Model

A k-D positive cone causal discrete LSV system can be

characterized by the superposition sum

nI  nk
Y(nl,..,nk) = Z ... Z h(n1,.. ,nk;ml, ..,mk)u(ml,..,mk),

ml=.0 mk=O 
(5.29)

where u(S) is the input at coordinate point m_=(mlm 2 ,...,mk),

y(n) is the output at coordinate point n = (n1,n2 ,...,n k )

and h(n,m) is the response of the system at the point n

to a unit impulse at the point m. At this point, a

definition, which is a natural extension of Definition 3.1,

is given.

Definition 5.2: A sequence (h(nln 2 ,..,nk;mlm 2,..,mk)}, is

K-th order degenerate if it can be expressed as

K
h(nl,..,nk;ml,..,mk) = i(nl,.. ,nk)3 in,. .,ink), (5.30)
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ix(n1 ,n2) = A1(nl,n2)x(nl-1,n 2) + A2 (nl,n2)x(nl,n2-1)

2 A 1 1n2)'(nl-lln 2-) + (5.221 )(5.22)

-3n~2in-~2l + b_(nl,n2)u(nl,n2) ,

y(n1 ,n2) = c_(nl,n 2 )x(nl,n2 ), (5.23)

where

AI(n,,n2) = T(n1,n2) Tl(n.-l,n2), (5.24)

A2 (nl,n2 ) = T(nl,n2 ) T-(n,n 2-1), (5.25)

-(n-n = T(n_,n f1 (n-l,n2-l), (5.26)

40b(nln 2) = T(nl,n 2)b(nl,r.2) , (5.27)

a(n1 ,n2) = c(nl,n 2 )T- (nn 2) .(5.28)

From the above, we can say that the state-space

representation in (5.22) to (5.28) is related to the state-

space model in (5.12) to (5.16) by the transformation

matrix in (5.21).

5.3 k-D State-Space Model

Now, the results obtained in sections 5.2 will

be extended to the k-dimensional (k > 2) case. The state-

space model in Section 5.2 was obtained by making use of a

geometric argument which consists of splitting a 2-D grid

." " " ' , , " ' ; " " " , " - ; "r' " ' " 
' "

' " ' ". . ." ." . " " . " . . . .'- . . .,
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x(-l,n 2) = 0 for n2 = 0,1,...,N 2, (5.20)

The state-space model introduced in (5.12)-(5.16) is based

on a three term recursion, which means that in order to gen-

erate the state vector x(nl,n2 ) at a point (nl,n2 ) we need

to have previously computed the state vectors at the points

(nl-l,n 2 ), (nl,n2 -1) and (n 1 -l,n 2 -1) in addition to the

current input. See Figure 5.2.

From (5.10), it is easy to see that the states are

decoupled; this is a nice feature which permits parallel

computation of the states.

The state-space model introduced here has a structure

similar to the Fornasini-Marchesini state-space representa-

tion [5.3]. The main difference between these two

models, is that in (5.12) and (5.13) some of the matrices

are non-constant.

The state-space model in (5.12) to (5.16) is not a

unique state-space model representation of the system.

Let i_(nl,n 2 ) be a new state vector defined by

x(nl,n 2 ) = T(nl,n2 )x(nl ,n 2 ). (5.21)

Let the transformation matrix T(nl,n 2 ) be nonsingular for all

points (nln 2 ) in the region S, defined in (5.18). Making

use of this transformation, equations (5.12) to (5.16),

become
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ii where

x (n1 ,n2

,cn,2 / (5.14)

x K(n1 ,n 2)

al n,n 2 )

E c(n1 ,n 2) (a c1 (n1,n2), a 2 (nl,n 2),...,cK(nl~n2)i . (5.16)

The initial conditions for the model above are:

x(n V-1) = 0 , x(-l,n 2) 0 n1 ,n 2 = 0,1,2,... (5.17)

If the input array {u(n 1,n2 )} has a finite support

S = {(n1 ,n2), 0 <n 1 < N1 , 0 < n 2 <. N 2} (5.18)

and we are interested in computing the output y(n 1 ,n 2 ) on S,

then we only require a finite set of boundary conditions,

which is given by

x(n1 ,-l) =0 for n 0,1,... ,N1 (5.19)
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n- 2

ni
t; 

n2

n2 -1 n21

+H - 4-
n1-1n2 1

n 1 -£ nn

Figure 5.1: Decomposition of rectangular grid for obtaining
recursion

N2
(nl, n 2 )

2

ni-i n I  NI

Figure 5.2: Neighbors of (n ,n 2 ) required to compute
state at (nl,n2 Yby the state-space model

S°""

0o , -,..'ii 2 .i - : ) • .- . . . "-.



5.8

Let us consider xi (nifn2) for an arbitrary but fixed i,

i=1,2,.i.,K. Splitting the summiation in (5.8) according

to the masks in Figure 5.1, we have

ni-I n2

x i(ni,n 2  E E i (mil x2 )u(in1,m2) +
M 0 in2=0

n1 n2-

M1=0 m2=0

- s( m2)u(ml1 2 +

M =0 M 2=
B (ni,n )u(ni~n)

Substituting (5.8) in (5.9) and making use Of (5. 7) ,we

have

x i(ni,n 2) = x i(n1- l~n 2) + xi (ni,n 2 -1) - xci(nl-l,n 2-1)

+ ai nln ) ~n~n2) i=1,2,.. .,K (5.10)

K
y(n1 ,n 2) z ai ~(nion 2)x i(ni~n 2 ) . (5.11)

Equations (5.10) and (5.11) can be rewritten as

* x(n1 In 2 ) = (nl-l,n 2 ) + x(nl,n 2-1) - x(nl-l,n 2-1)

+b1(n 1,In 2)u(n1 ,n 2)(512

* Y(n12n)= c(nl3n )x(n1 ,n) (5.13)

2)20
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Let h(n1 ,n2 ; ml,m2 ) be the impulse response of a 2-D

first quadrant quarter-plane causal discrete LSV system,

and let u(n1 ,n2) be the input to the system with support in

the first quadrant. Then,

h(n1 ,n2 ; mlm 2) = 0 for n1 < mI or n2 < m2 , (5.3)

and

U(nl,n 2 ) 0 for n1 < 0 or n2 < 0. (5.4)

Substituting (5.3) and (5.4) in (5.1) the input-output

relation is given by
n 1 n 2

y(n1 ,n2) = r h(n1 ,n2; ml,m 2 )u(mlm 2 ) (5.5)
m=0 m2-0

• If the impulse response h(n1 ,n2 ; mlIM2 ) is a K-th order

degenerate sequence given by (5.2), then, substituting

(5.2) in (5.5) we have

n n 2  K
Y(n,,n 2) = z E ( l ai (nn 2 )ai(mlm 2 ))u(ml ,m2 ). (5.6)m =0 -0= i=l

After some manipulations involving the interchanging of

summations, we obtain

K
y(nl,n 2 ) = Z 0i( n2)xi(n,,n2), (5.7)

where
n I  n 2

xi(nln 2 ) = Z 3i (ml,m2)u(mlm 2 ) . (5.8)
m1 =0 m 2 =

i=l,2,.. .,
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Linear Shift-Invariant systems the sum in (5.1) gets trans-

formed into the standard 2-D convolution and there are

very efficient techniques for calculating the 2-D discrete

convolution. These techniques include transform domain

methods that make use of fast algorithms and there are

also state-space models for recursive implementation in the

spatial domain [ch. 4 in 5.31.

For LSV systems; the transform domain techniques cannot

be used in general and, in addition to this, there are,

as yet no state-space recursive models for 2-D LSV systems.

Some very restrictive 1-D state-space models for LSV

systems have appeared in the literature. They permit the

analysis of I-D LSV systems under very strong restrictions

imposed on the impulse response [5 .%], f5.171.

5.2 2-D Quarter Plane Causal State-Space Model

In order to develop a state-space model, the following

definition has to be introduced as a natural extension

of the I-D case [5.141.

Definition 5.1: A sequence {h(nl,n 2 ; mlm 2)} is a K-th

order degenerate sequence if it can be expressed as

K
h(nl,n 2 ; ml,m 2 ) = E ai(nl,n2)ai(ml~m2), (5.2)i=l 2 '2~ , 2  52

where ai(n,,n2) (i=l,2,...,K) and si(mi,m2 ) (i1,2,...,K)

*are, respectively, linearly independent functions of

(nln 2 ) and (m1,m2).

- 2
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(where the impulse response sequence was assumed to be either

expressible or approximated in k-th order degenerate form)

* domains. In thi- chapter attention will be focused on the

development of a state-space model for a k-D LSV system whose

impulse response is expressible in K-th order degenerate form.

For convenience in exposition, the development of the model

will be initiated for the 2-D quarter-plane causal case and a

complete proof for the feasibility of extension to the k-D

(k > 2) case based on a (2k-l)-point recursion will be given.

The possibility of generalizing the model to cover multi-

dimensional weakly causal LSV systems will be substantiated.

The model for the inverse system will be derived and applied

to problems in deconvolution. Nontrivial physically motivated

examples will be included.

A two dimensional discrete LSV system can be described

by the discrete sum

y(nl n2) = z h(nl,n2 ; ml ,m2)u(ml ,m2), (5.1)

where u(m) is the input at coordinate point m(mlm 2),

* y(n) is the output at coordinate point n=(nln 2 ) and

h(n1 ,n2 ; mlm 2) is the response of the sytem at the point n

to a unit impulse at the point m.

The input-output relation in (5.i) is far from being

very convenient because it is not recursive and, therefore,

the amount of computational time required for implementing

the relation will be very large. In the case of 2-D discrete
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sufficiently general, poses some dimensionality problems in

implementation, in spite of the fact that the restorations

besides being positive are spatially smooth and not overly

sensitive to noise in the image data at object points that are

near the background radiance. Then, there is the class of

iterative methods based on gradient type [5.9] and conjugate

gradient type [5.10] of optimization procedures. Iterative

methods are not very suited for image restoration because of

the problem of noise suppression. If the blurred image to

be processed includes a noise, then this noise strongly

deteriorates the quality of the restored image as the number

of iterations increase. Thus, a method is desired that enables

one to suppress noise amplification more efficiently, while

restoring the image sharply. The three ways to suppress noise

*O amplification are; (1) stop the iterations at a moderate

iteration number; (2) introduce constraints; and (3) reblur

the blurred image as done in [5.111 for LSI systems. In spite

of these efforts, the general problem of space-time computa-

tional complexity has limited the use of practically all

methods (including those already cited and others [5.12],

[5.13]), in shift-variant multidimensional problems.

A more general approach than that permitted via use of

coordinate transformation was pursued recently in [5.14],

where the analysis was restricted to one-dimensional (l-D)

discrete LSV systems. Investigations, however, were carried

out both in the frequency (using the discrete version of

* .Zadeh's generalized transfer function introduced in the

discussion of continuous time systems [5.15]) and time
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6 ii2i3" ' 1ik+l with i 0 0
{or , iz = for (Z=2,3,...,k+l) and
1 1

i2 +i 3+... +i k+l--j.

Therorem 5.1: Given the matrices in (5.34) to (5.36), then

for any integer k > 1, we have

00.. .0k
0 B.. (nl,..,nk) k 7 (-l)J+l1 k(j)B i k(nl,..,n

4 L)r'.k. j=l k

00.. .0
+ 6i i(nl,..,n k ) .  (5.39)

Proof: (by induction)

For k=l

• 8i(0)

Si( 0 ) $i(1)

,(n ) . (5.40)

i(0) Bi ( I )  ... i (n 1)

The last row of B ij(n 1 ) in (5.40) can be expressed as

[ i(0) i ( )  ... i (n1)] -= [ i (0) 3 i ( )  ... i (ni- l1)0] +

[0 0 ... 0 1]i (nl) (5.41)

Making use of Definitions 5.3 and 5.4, the expression in (5.41)

can be written as

0 0
" -- B~ (n ) =  1I( l)  Bi (n )  +  '5 i(n )  (5.42)

.-. 0 1

_ . -'. - , '-,L, LL'LdL.~ ~~-,,I.>--.. - W - - "- , - • - , - . _. . . . . ...
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I

which corresponds to the expression in (5.39) for k=l.

From the matrices in (5.34) to (5.36) , for any integer k > 1,

we can write

i 2 1 .. ik+1- n ([0 0 . 0 642 3

• 0 0 Bi,k ( 2 n3 ''''nk+l)]
0 i2i 3 . . i k+ 1 _ ii2i 3 - i k+l)B n (5.43)

(!-k+l - k+l Bi,k+l 2nl'n2..'n k+l) •

If we now assume that the hypothesis is valid for a fixed

integer k, with nI fixed, we can write
01

00...0 n1 k nI
B. . Zk(J)Bik(n2,...,n- l ~2 .. k~) j=l kl

00.. .0+ k & i(nl,n2 ... n l) (5.44)

Also from (5.43), after setting i 2=i 3= ...=i k+=0, we have

00.. .0 100.. .0

(5.45)

Substituting (5.44) in (5.45), we have

00.. .0 10.. .0
* k+l Bi,k+l (nl9"""nk+l) = 4k+l B.!,k+(nl,...,nk+l)

k j+l nl

+ z (-i) [0 0...k(J)B i,k(n2, ...n
j=1 ~)

00.. .0
+ [0 O...O 4 'k+l(nl,.... k+l)]

(5.46)

6 " " -..- . ..--' ' .' . " -. . . - - -' . - - . .- - -' .. -- .
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From (5.43), making use of Definitions 5.4 and 5.5, we

obtain

nI
[0 0 ...0 !k(j) B.,k (2,..,nk+)]

0 1
(.k+l() - i,k + l  nk+l) (5.47)

Also, from Definition 5.3, we have

00..0
[0 0... 0 +l(nl, ..,k+,) (nl,..,nk+l) (5.48)+k+l •,nk+1) ( 8

-k+l

Substituting (5.47) and (5.48) in (5.46), we have

00..0

ik+l Bi,k+l(nl,.'n k+l) =

10..0 k 1j+l 0
[!k+l1 + ' -i (-ck+l(j)-S-k+l(j)) ]B i pk+l n,.,k+1)

j=l

00..0
+ 6k+ B ,k+1(n , • ,nk+I ) . (5.49)

From Definition 5.4, it is straight forward to show that

10..0 0
*k+l + E-k+l(1), j=l

0 1
Lk+l(j) = k+l(j) + k+l(j-l), j=2,3,...,k (5.50)

lk+l (k), j=k+l

Consider now the expression in square brackets in (5.49),

0

irS .. -..-... i . - - . . i-.. .
... , =._ ., . . -. - - .. . .i.. . . - -: , .-, . ., . . ,.- - . ,-
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10-.0 k 01
S k+1 + Z (-1)"(() -kl~)j=1

10 0 .. 0 0 k 0
ik+ I + 2k11 + z ( 1 )jl (2-k+1(j) + Z~~-)

j=2

+ (- 1 ) (k+l) +1 z.+(k) .(5.51)

Substituting (5.50) in (5.51), we have

100-.0 +k (.)j+1( 0 1

* k+l
= J ( )J l -k+ l Q(i (5.52)

Substituting (5.52) in (5.49), we have

00-.0

k+l j+1
z (- 1) a+l(j)lli,k+l(nl,..,nk)

00-

which corresponds to the hypothesis for k+1. Therefore,

by the principle of mathematical induction, the proof is

0 now complete.

The following definition has to be introduced at this

point:
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Definition 5.6: Define,

X4(n 1 ,n23 . Zn) :~1 -r( n-rs (2) , .n-rs (k)lI

k
where i~ r (i)=.j, rs (i)=0 or I for each i and the sets

k
r s (1), r s (2),..., r5 (k)}, s=l,2,. .. ,(.i) are mutually distinct.

Theorem 5.2: Given a k-D,(k > 1), positive cone causal LSV

system whose impulse response is a K-th order degenerate

sequence characterized by expression (5.30). Then, the

superposition sum in (5.29) can be implemented by a K-th

order state-space model. This state-space model is based

on a (2k~l)-point recursion described by,

k
(nl,..,n) Z(1)j~ 1 xj(n1 1 . . nk) + s~i.,

i=1,2,... ,K, (5.54)

K
y~n,..nk) Z anl..,nk)xi(nl,. .,nk). (5.55)

i=l

Proof: From expressions (5.33) to (5.36) , making use of

Definition 5 .3, we have

x.(n 1 .-~l' =- 1.22. (nl-,
1-192- 2, ,k-k) -k -i,k 1'*,k)Lk (5.56)

* i-1,2,...,K

Substituting the expression (5.39) of Theorem 5 .1 in (5.56),

after setting ii1=i 2 ... =.
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k

xi(nl,..,xk) = (-I)j+l Zk(J)Bi,k(nl,..,nk)u
j=1

00..0
+ i k (5.57)

From (5.56), making use of Definitions 5.6 and.5.6, we have

x (n n,.n(.8x l'..n k ) = Zk(j) Bi,k(nl .. k) c (5.58)

From the ordering defined for the vector uk, we have

00..0
u(nl,..,nk) = k k (5.59)

Substituting (5.58) and (5.59) in (5.57) , we obtain the

expression in (5.54) The recursion is based on z-points,

where
kk k
S() 2k-I  (5.60)

j-1

The proof is now complete.

S ' . ., - _ , , . -.- - , , , = ~ , - . , - l ~ 1 , . . . .". . -" ' -" -t " " - " ' " " - " -
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The example below serves to clarify the various notations

introduced in the preceding discussion. For brevity in

exposition, this example tackles the k=2 case, for which the

3-point recursion arrived at in section 5.2 is verified as

a special case of the general result.

Example 5.1 Consider (5.32) for the case, k=2. Then, the

exp r es sion
n I  n 2

xi (nl,n2 ) = E E i(ml,m2 )u(m l m2 ),
ml=0 m2=O

is considered for the case when nl-n2 =2. Then counterpart of

the matrix form representation in (5.33) is given below in

expanded form. Note that the lexicographical ordering described

has been adopted. It is clear that in the k=2 case, this

ordering results from a row-by-row scan of each of the arrays

{xi(il,i 2)} and {u(il,i 2)}.

x (0,0) 1 (0,0) u(O,0)

1 1

xi(O, 1) 2i(O,O) i(O, 1) u(O,1)

x i(0,2) i (0,0) Si(O1l) i (0,2) u(0,2)

xi(lO) 3 i(0,0) Yi110) u (1,0)

x i (1,1) (0,O) i(O l) 1il0) (111) u(1,1)

x i(1,2)1 3i(0,0) Bi(O 1 ) 3i (0,2) i (1,O) i (1,1) i (1,2) U (1,2)

xi(2, 0) 3i(0,0) i(1,O) 3i(2,0) u(2,0)

x i(2,1) 3i(0,O) i (O'l) Yi1l,) i (111) 3i (2,0) i (2,1) u (2, 1)

x.1(2,2)1 i '(0 10 )  i ( O ' l )  3 i (0,2) B i(1,O) i(111) i 1 ,2) 3i (2,0) i (2,1) a i(2 ,2) u(2,2),

(5.61a)
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Specializing the representation in (5.33) to this case,

(5.61a) can be written as,
i

-2 -i,2("2)u2 ,

where,
0Bi, i(n2)

B0  (n2 BI  (n2

14 , 2 (n1 n2)= i 1-2, 1 2) (5.61b)

B0  (n2 BI (n2 B 2  (n2
i, 1i 2 - , 1I 2 - l, 2)

and

ij ,0)

B. " (n2 ) = Bi(j,0) i(Jl) (5.61c)

to i( j ,0) i (j, i) Bi( j ,n2)

Clearly, (5.61b) and (5.61c) give the relevant specializations

of the matrices in (5.34)-(5.36). Applying Definitions 5.3

and 5.4 to the case under consideration, we have

00
i2 = [000 000 001],

510 = [000 001: 000],

01 I
1 = [000: 000: OLO],

i2 = [000 010 000],

(1) 01 10
i2(i) 2 + -20

(2) 611
2 -2
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Let r.j denote the j-th row in the matrix B~ i2 of (5.61a),

j=1,2 ,.. .,9. Clearly

E9 =r +r' - E5 [0 0 ... 0 .(2,2)]

the above equation can be rewritten in the form,

--2 -i , 2 n, 2) = 2 14, 2 (n,,n 2 ) + ii2 14 2 (n,,n 2 )

911 B (nl~n 00a(2)
- L -i B 2 (n 2 ) + 3-2 %j,2

=1 £.(1)B i, 2 (nl,n 2  a £2 (2)B, 2 (nl,n 2)

+ 300 3 ( , (5.62)

which is the relevant specialization of (5.39).

Note that,

. (n i,n-j L2j B.i2 (nl,n 2 ) 2  (5.63)

Multiplying (5.62) from the right by !u2 and using (5.63),

we get

x i (n1, n2  = x (n 1 ,n 2 - ) + x i(n 1-l,n2 )

(5.64)
- xi(n 1-l,n2-l) + ai(nlmn2 ) u(nl,n29.

Applying Definition 5.6,

x~n1n2  =x~n 1 l~ 2) + xi(nl3n 2-1)' (5.65a)

x 2(nin ) = x (n1-l,n2-) (5.65b)

Substituting (5.65a) and (5.65b) in (5.64) we get

x (n1 ,n) x I (in2 (in + :. (n1 ~n )u(n1~n2
2 ( 1, 2) -xi 2n1,n2 2

which is the relevant specialization of (5.54).
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5.3.2 Extension of the k-D State-Space Model to a Causality
Hypercone

The state-space model developed in Section 5.3.1 for

a k-dimensional positive cone (or hypercone) causal discrete

LSV system, can be naturally extended in order to represent

a k-dimensional (k > 2) weakly causal discrete LSV system.

Definitions 5.7 and 5.8 given next, are introduced in order

to reach the desired goal.

Definition 5.7: A k-dimensional causality hypercone Cc; is

the intersection of k half hyperplanes Hpil,Pi2,..,Pik

(i-1,2,...,k), where

H. kk

pilP I 2' .,pik = ( {(xl,...xk)!(xl,...,xk) E Rk

PilXl ..+  + Pikxk - }

• (i-1, 2, .... k)

and pij(ij-l,2,. .. ,k) are non-negative integers,

satisfying

det = 1,

where

Pll Pl2 Plk

-. , (5.66)

Pkl Pk2 "'" Pkk

It is important to note that in a k-dimensional causal-

ity cone Cc , any vector v going from the origin to a point

P in C can be expressed as a linear combination of the
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vectors i=l2,...,k. These vectors are called the

generator of the causality cone and it can be shown that

the generator gi,i=l,2,... ,k corresponds to the i-th

column of the adjoint of the unimodular transformation

matrix .

Definition 5.8: A k-D discrete LSV system with impulse

response h(nl,...,nk;ml ....mk), is causal on a causality

hypercone Cc if and only if

hn .....nk;m . .n k )  =0 for (Zl,...'k) Cc ,

with zi = ni - mi (i=l,2,...,k).

The one-to-one and onto mapping ¢, defined in (5.66),

maps any integer point in Cc onto a unique integer point in

the positive cone Q,
S

: Cc al zk Q I Zk and o[(0,O,..,0)]=(0,0,..,0),

Given a k-D discrete LSV system with a K-th order degenerate

impulse response, which is causal in Cci then use of the

mapping defined in (5.66) and its inverse, a state-space

model can be derived. The resulting K-th order state-space

model will be based on a (2 k-l)-points recursion. For the

sake of clarity and brevity in exposition, the procedure is

described for the 2-D case, from which the k-D (k> 2)

counterpart can be obtained as a direct generalization.
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Let

Y(n1 ,n2) ( z z h(n1 ,n2 ; mlm 2 )u(mlm 2 ),
(mlm 2 ) cC (5.67)

(nln 2 ) :C c

be the input-output relation of a discrete LSV system, and

let~h(n1 ,n2 ; mlm 2 )}be causal in Cc* In addition to this,

assume that h(nl,n 2 ; ml,m 2 )} is a K-th order degenerate

sequence expressed as in (5.2). Using the map in (5.66)

with k=2, we map the input, the output and the

impulse response in (5.67), as follows

a(ilfn2) = u(m1 ,m2)1 (5.68a)

m -1 I

m2 -2

y(nl,n 2 ) = y(n1 ,n2) (5.68b)

n - n(n2) =€ (2,

and

fi(nln 2 ;rnl"1 2) = h(n11 n2 ;mlm 2)) (5.68c)

(m2) (n2)

n = -I n,(n2) f- (2.

Then, h(nl,a2 ; mm 2) is first quadrant quarter plane

causal. The input array (il,i2) and the output array

Y(nl,n2 ) have support on Ql. In addition to this, from
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(5.2) and (5.68c) h(nil,2;,il,) is a K-th order degenerate

sequence, and it can be written as

K
h(n,n 2 ; ml,m2 ) - i i(nin 2 );i(mlim2 ) (5.69)

-1=1

where

=i(fil 0fi2) = i(nl,n 2 ) 1

nl -1(1) ,

(n2 = * 11 (5.70b)

m2

From (5.67) and (5.68), we have

ft 1 f2
y(nl,n 2) - z h(nl,n 2; ml,m2)u(ml,m2 ) . (5.71)

m1 0 m2 0

For the first quadrant quarter plane causal LSV system in

(5.71), with its impulse response given by (5.69), we can

now write, using equations (5.12) to (5.16, a state-

space model with support on QI.

' x2) + x(nl,2- 1)

(5.72)
- x(nIl-l,n 2 -1) + b(n I, n 2)u(nlri2 ),

y(n1 ,n2) = i(n 1 ,n 2 )_(n 1l, 2 )
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where

I (nl,n 2)

b(n19n2) = (5. 73a)

SK(nl,n 2)

C(nlpn2) = [ 1 (la 2 ) ', .',K(n-lpn 2)]• (5.73b)

The initial conditions are:

x(fil-1) = 0, i(-l,n 2 ) = 0 n1 ,n2  = 0,1,2,... (5.73c)

Mapping back to Cc the state-space equation described in (5.72)

and (5.73), (for notational brevity, replace PllP 12,P2 1,P22

in (5.66) by p, r, q, t, respectively)

x(n1 ,n2 ) = x(nl-t,n2+q) + x(nl+r,n2 -p)

(5.74a)

- x(nl+r-t, n2+q-p) + b(nl,n 2 )u(n,,n2 ), (nl,n2 ) C Cc ,

y(nl,n2 ) = c(nl,n 2 )x(n1 ,n2), (nl,n2 ) E Cc, (5.74b)

where

%(n,n 2)

b(n,,n2 ) = (5.75a)

K (nln 2)

c(n1 ,n2 ) = [a,(nl,n 2 ), ... , aK(nltn2)]. (5.75b)

The initial conditions are:

x(tn+r,-qn-p) = 0, x(-rn-t,pn+q) = 0 (5.75c)

n0 , 1 ....
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= 1 rcos(q a )-r °  rosin(a.-

h(riii;r ') - h0 (' i  0) +1, 2 o )  (5.90)

where the function h0(xi,Yi) is the response to an impulse

at r=l, 60=0. The form of h0 (.) for several special cases

such as spherical and coma aberrations are derived in [5.20].

For Cartesian coordinates (xl,x 2 ) and (t 1 ,7 2 ) of the image

and object planes, respectively, we have

X1 =ricos i  Ti = roCOse °

(5.91)
x2 = risine i  2 = ro0sins

Substituting (5.91) in (5.90), the impulse

response in Cartesian coordinates, h(x1 ,x2 ;z1 ,T2 ), for

the coma aberration becomes

I hx11 + x2T2  x 2 L - X 1 2

lh0 ( T.22 2 2 )  (5.92)
x2Ti1 + 2 T +  t 2  Tl +  2

where h0x.1 ,x2 ) is the response to an impulse at 1l=l, 2=0;

that is, h0 (XlX 2) - h(x1,X2 ;l,0), is given by

2C

2 2~~ for (x1,x2) I

h 0 (x1,x 2 ) - (5.93)

2 for (xl,x 2 ) £ II
1 3x2



derived in (5.88)-(5.89), a stt.- ace mcdel of the

inverse system was implemente.

The (32x32)-points original object, shown in Figure

(5.4a) was blurred by the simulated r~tion blur described

in (5.86) with the parameters in (5.82) and (5.84) taken

typically as T=l, a=2, a=l and _=.2. The resulting motion

blurred image is shown in Figure (5.4b). From the motion

blurred image in Figure (5.4b) by using a (2.K+l)-th, (K=10),

state-space model of the inverse system, the original object

was reconstructed. The reconstructed object is shown in

Figure (5.4c), From Figure (5.4c), we can conclude that

for a fairly low order state-space model, the reconstruction

is very accurate.

5.5.2 Coma Aberration

Within the geometrical optics model of image formation,

aberrations are described by the ray aberration function

which is a vector in the image (output) plane from the

Gaussian image point to the point where the ray actually

intersects the image plane. The Gaussian image point is

the image in the output plane of a point in the input plane

in absence of optical aberrations. Let (rie i ) and (roo

denote, respectively, the polar coordinates of the image

and object planes. It has been shown in a paper by Robbins

and Huang [5.19] that the impulse response, h(ri i ;ro0 o
) ,

for coma aberration is given by
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Figure 5.4c: Restored object from motion blurred image
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(NxN) of the input array. The discrete motion blurring is

carried out, line by line, by means of the following

expression
nI

y(nl,n 2 ) = E hD(nl,ml)u(ml,n2 ) (5.86)ml=0

nhi=0, i .... ,N-l, i--1,2

Analogously, before implementing a discrete state-space

model for the inverse system, the approximated impulse

response h*(x,u) in (5.84), has to be discretized, and the

resulting discrete impulse response h*(n,m) is given by

h*(n,m) = h*(n.A,m-L), (5.87)

where A has been previously defined. Then, from (5.87) and

(5-84)-(5.35), we have

2.K
h*(n,m) = z ai(n) i (m) , (5.88)i=O

where

U 0(n) = 1 , 20 (m) = a0 (mA), (5.89a)

ai=(n) = cos(n.21 i.A) si(m) = ai(m), i=l,...,K ,
Tp (5.89b)

C2(n) = sin(n. r- iA), S (m) --b (m.), iK+l, ...,2K ,
P (5.89c)

From the (21K+l)-th order degenerate sequence, {h*(n,m)}
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a d1
(u-+c {rakCOS(Wk(U 2 d2))Cos(wkd) + k-r cos(wkul)},( 1I 2k

k U 2  T (5.85c)
bk(u) 

Lk~

aU-7) 8 {kcos(wk(u2-d))cos(wkd) + F. cos(wku I )

d sin(- 1 2k
-T __ u2) D -

2 5

k=1,2,...

where

2kWk T

* Wk1

k 2 (w 2 2k )

Twk D 2s-
B k 2(

1- 1
2 T(wk + 2)

d D2 /2

In order to simulate the motion blurring phenomenon on

a digital computer, the impulse response h(x,u) in (5.83)

was discretized and hD(n,m) corresponds to the discrete

version of (5.83), where

hD(n,m) = h(nA, mA)

for a fixed A, such that U - (N-1)'. The constant U

has been previously defined and N corresponds to the size

++ " + .- ' + < . + . +i --. -. +. . . + .i' + +. " < . . - + + - -*. ,*-+ ++ ., . .. -, . - , .. . -' . .'
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Tp > U2 - U + Dip

where

U2 _ +a U + a_Ta
2 a ap

and D will be defined to be T p/4. Under this assumption

h(x,u) can be expanded in a Fourier series, which is

truncated to yield,
K

h*(x,u) = a0 (u) + E {ak(u)cos( kx ) +bk(U) sin(Z kx)}.
k= p p

(5. 84)

The ak(u)'s and bk(u)'s in (5-13), obtained in closed form,

are
/

0( T(u+t) (u 2 - ul - d2 ), (5.85a)

a 1
(u+) {aksin(wk(U2-d))cos(wk d ) - sin(wkuI'I1 I 2k

ak(u )  5 T ' (5.85b)

a {Bksin(wk(U 2 d))cos(wkd) - sin(wkul)

- 4 (-_! u2) D 2k
T o 2 2 T

k=l,2, ...



h(x,u)

U1  u u2 - D 2 U2 Tp

Figure 5.3: The impulse response of LSV system modeling
motion blur
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over these superfluous points. The discontinuity at

x + Tx =L- + - ,will be slightly smoothed for better
a a'

results in the approximation. From the above, the function

to be approximated, h(x,u), is

a-- Ul < x < u2-D 2a

h(x,u) -- u+- w(x) u2 -D 2 < x < U2 , (5.83)

0 elsewhere,

where

u, u - DI

u2 _ T+a U + aT
u a a

D2 = (u2 -u)/l0

w(x) is a Hanning window, given as

w(x) - .5(1 - cos(D- (x-u2))
2

The constant DI will be defined later in this

section. The function, h(x,u), is plotted, for a fixed

but arbitrary value of u, in Figure 5.3.

The u variable will take values over a finite interval,

[0,U]; then, for any arbitrary but fixed u e [0,U], we can

consider h(x,u) to be periodic in x for a sufficiently

large period, T
P

. . . .4 ~ - . ' ? . . . . . . . . . . i .
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5.5 Examples of Applications

In this section, two examples are presented which illustrate

the application of the state-space model for the inverse

system to the restoration of a degraded image, where the

degradation is modeled by a LSV system describable by (5.10)

to (5.17). In section 5.5.1, the physical phenomenon

responsible for image degradation is motion blur while in

section 5.5.2 the degradation is due to a type of optical

aberration, referred to as coma.

5.5.1. Space-Variant Motion Blur

Consider the one-dimensional motion [5.18]

u g(x;t) - a a,a,u > 0 (5.81)

t c [0,T],

Using Sawchuk's analysis, this motion is modeled by a LSV

system whose impulse response is:

a < u + aT
U+-' a u '

h(x,u) - (5.82)
0 elsewhere

In order to obtain a 1-D state-space

model for this blurring, the impulse response in (5.82)

will be approximated in degenerate form. Before carrying

out the approximation, it is important to note that the

state-space model is causal and, therefore, it will not

evaluate the impulse response, h(x,u), at points x < u;

this will be used to our advantage in extending h(x,u)

. . . . . . ..I. . . , - . - ., -" . " , . .. .,, • . i . . , v - , -i i'
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h(n1 ,n 2 ;nl,n2). 0 0 for all 0 < nf.N ,i-1,2. (5.79)

1 5.4.2 Weakly Causal Case

The inverse of the system described in(5.74)-(5.75)

is easily shown to be:

S(n1 ,n2 ) =AI(nl,n 2) [z(nl-t,n2+q) + z(nl+r,n2-P)

-Z(n I+r-t,n 2+q-p)] + b1I(nl1 n2 ) y(nl,n 2) (5.80a)

u(n11 n ) STc(nl,n) [z(n1-t,n +q) + z(n,+r,n 2-P)

S* I (n+r-t ,n2+q-p)] + d1 (nl,n2 )y(n1 ,n 2), .(5.80b)

with initial conditions

z(tn+r,-qn-p) = 0 , z(-rn-t,pn+q) =0 ,n=0,1,.. . (5.80c)

where L,(nl1 n 2), b11 (nl,n2) iT(nl1n)an d1(n, 2  have

been defined in (5.77).

The necessary and sufficient condition for the

existence of the state-space model, in (5.80) is,

s1(n1,n 2) 'b 1(n1 ,n2) #0 for all (nl,n2) e Cc

*or, equivalently,

h(n1,n ;,,,n) 0 for all (n1,n2) E Cc
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oz(n,-) - 0 , z(-l,n 2 ) =0 for n.0,l,...,N , i=1,2, (5.76c)

where

Al(n,n 2 ) = K-b(nl,n 2 ) [c(nl,n 2 )b(nn2 ) ] c(nln 2 ), (5.77a)

and IK is the K-th order identity matrix,

bl(nl,n 2 ) = b(nl,n2 )[c(nl,n 2 )b(nl,n2 )] - , (5.77b)

c1 (nl,n2 ) = _ [c(n 1 ,n 2 )b(nl,n 2 ) ] I c(nl,n2 ) , (5.77c)

dl(nl,n2 ) = [c(nl,n 2)b(nl,n2)]-
1  (5.77d)

It is important to note at this stage, that the state-space

model of the inverse system, given in equations (5.76) Ind

(5.77), is based also on a three point recursion. Therefore,

it will provide a very efficient deconvolution procedure.

In addition to this, for a reasonably low order state-space

model, there will be no storage problem because the state-

vector is only two dimensional and there is no need to
0

store it over the entire input mask.

The state-space model, considered here, for the

inverse system exists if and only if

c(nln 2 )b(nl,n 2 ) 0 for 0 < n, i=1,2, (5.78)

or equivalently, by substituting (5.15) and (5.16) in (5.7 F)

and making use of (5.2), we have that the condition in (5.73)

is equivalent to

.. . .."
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L 

..

From the above equations, we can see that the state-space

model in (5.74) and (5.75) preserves the three point recur-

sion. It is important to -emphasize that in this case

the recursion in (5.74a) does not depend on the closest

past neighbors of the point currently under consideration.

5.4 State-Space Model for the Inverse System

In section5.4.1. the state-space model for the inverse of

the system described in (5.10)-(5.17) is first given. In

section 5.4.2, the counterpart in the weakly causal case is

considered.

5.4.1 First Quadrant Quarter-Plane Case

Consider the state-space model of the first quadrant

quarter-plane discrete LSV system described in (5.10)-(5.17).

The state-space model of the inverse system, whose state-

vector, input and output at the point (nl,n2 ) are, respectively,

z(n1 ,n2 ), y(nl,n 2) and u(nl,n 2) is:

z(nl,n 2 ) - AI(n 1 1n2)[z(nl-l,n 2 ) + z(nl,n 2 -1) -

* z(nI-l,n 2-1)] + bI(n1 ,n2)y(nl,n2 ) , (5.76a)

u(n,,n 2) = cI(n 1 ,n2)[z(nl-l,n 2 ) + z(nl,n 2 -1) -

z(nl-l,n 2 -l)] + dI(nl,n 2 )y(nl,n 2 ) , (5.76b)

with initial conditions



where C is a constant and the regions I and II are clearly

defined in Figure 5;5.

The impulse response h(xl,X 2 ;T1 ,T 2 ) for the coma

aberration in (5.92) is, in general, non-causal, but by

imposing some constraint on the radius R0 in the pattern

of the impulse response h0 (xlx 2 ) in (5.93) as shown in

Figure 5.5, it is possible to perform the deconvolution,

recursively. The restriction on R0  corresponds to a

limitation in the amount of coma aberration to be tolerated,

which can be made very small depending on the quality of

the lens.

In order to perform the deconvolution, the input plane

will be divided into its four quadrants and the deconvolution

* will be carried out for each one of them. The final

reconstructed object is obtained by superimposing the four

resulting arrays. For this procedure to be valid, without

loss of generality, an object point outside Q1 should not

affect an image point on Ql. This condition is illustrated

in Figure 5.6, and it will be used to determine a bound for

R0 '

From Figure 5.6, the inequality dv < II is sufficient

to guarantee that the object point (r1 ,r2) will not affect

any image point on QI. Simple calculations enable one to

get the maximum allowable R0 required to recursively restore

an (NxN) input array to be

I1

R0  = (5.94)
ma.Lx (N-I) - 2

i"
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x2

Figure 5. 5: The shape of impulse response of LSV system
modeling coma aberration
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x2

t/

2)I300

Figure 5.6: Diagram to determine a maximum value of the
radius of the coma pattern
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0

As an example, a (3lx31)-point original object u(n ln 2 ).

-15 < ni < 15, i=1,2, which is thi counterpart of the

g(3 2x32)-point original object in Figure 5.4a was blurred by

the coma aberration. For this object size, N=31, and RO
max

.065. The blurred image y(nl,n2 ), -15 < n i f_ 15, i=1,2

was obtained by performing the summation,

15 15
y(n l n 2) = hD(nln 2 ;ml,m 2 )u(mlm 2)

ml=-15 m2=-15
*-15 < ni < 15, i=1,2

where

* hD(nlkn 2 ;mlm 2 ) = h(nlA,n 2A;mlAm 2A)

-15 < n,<_ 15, -15 < m< 15,

i=l,2

and

A = 1/15

The resulting blurred image is shown in Figureb7. In

order to implement the state-space model, the impulse res-

ponse, hD(nl,n 2 ;mlm 2 ), was exactly represented as a

degenerate sequence by means of the DFT of hD(nln 2 ;mlm 2)

for each pair (mlm 2 ), -15 < m. < 15. This procedure is

explained in [5.21]. The symmetry of the impulse

response of the coma blurring was used in reducing the

amount of DFT's required for this representation.

A state-space model of the inverse system was obtained and

used in the deconvolution. The deconvolved image matched

exactly the original image.

:- : - : 2 : : : ; :- : : :< i - i :  . . . . . .- -o . , - . _ - , - . . . . . . . .. , .
/I
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5.6 Conclusions

Procedures for compensating for effects which degrade the

accuracy of remotely sensed datas by mathematically inverting

some of the degrading phenomenon are required in biomedical,

industrial, surveillance and earth and space applications.

Images to be restored are often degraded by a linear spatially

varying operation. Degradations due to motion blurring and

optical system distortions often require the imaging systems

to be analyzed by modeling the degradation as a linear shift-

variant operation. High speed digital computers have been

primarily responsible for the development of techniques

for image restoration of shift-invariant motion blur, but

counterparts of such techniques in the shift-variant case are

severely handicapped by the required space-time computational

complexity. Attention has been directed to the alleviation

of this shortcoming and the results arrived at are, first,

briefly summarized and then directions for research in the

immediate future are provided.

For any 2-D discrete first quadrant quarter-plane causal

linear shift-variant (LSV) system, whom impulse response is

a K-th order degenerate sequence a K-th order state-space

model was obtained. This model is recursive and is based on

a three-term recurrence formula relating any point in the

state-space model to its three closest past points and the

current input. The state-space model was extended in order

to model 2-D discrete LSV systems with support on a causality

cone. Subsequently, the 2-D quarter-plane causal and weakly

causal discrete models were extended to the n-D (n > 2) case.

I ... : . . . . . .... . . . . . . . . . . .. - . : :
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The resulting state-space models are recursive and based on

a (2 n-1)-points recurrence formula, which for the causal

case used the (2 n-1)-closest neighboring past points in

addition to the input in order to compute any current output

state. For the weakly causal case, the (2n_,) computed

points required are not, in general, the closest neighbors to

the present output, which is being computed. Conditions for

the existence of a 2-D state-space model for the inverse

system are readily derivable from the original one. Models

for the 2-D LSV system and its inverse can be used to perform

analysis and deconvolution problems very efficiently. This

can be substantiated from dervided expressions for space-time

computational complexities [5.21].

Examples of physically motivated applications makingS-
use of the theoretical results developed have been worked

out. These applications include effects of 1-D LSV motion

blur and the blurring due to Seidel aberrations of a lens;

in particular, the 2-D LSV coma aberration was studied in

detail. The reconstruction of the original object from

the LSV blurred image was carried out successfully by means

of the state-space model for the inverse system. For the

construction of the LSV model, the impulse responses of

the blurring phenomena were approximated in degenerate form

via series expansions using orthogonal functions. For details

regarding this, see [5.21].

-. ' ; -I. .U . . ; -I - - --. -- - .-. - . - - . - ;i . . . •
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The possibility of using the state-space model of the

inverse system for the restoration of the original object

from a LSV blurred image in the presence of additive noise is

currently under investigation. A causal, discrete counterpart

of the integral equation in Phillips [5.22] was implemented,

and for variovi signal-to-noise-ratios (SNR) the deconvolution

was performed. It is interesting to note that in this case,

there were no large oscillations and as the SNR increased the

difference between the original sequence and the deconvolved

one decreased. Also the deconvolution of motion blurred and

coma blurred images corrupted by noise was performed for

different SNR. The restored objects, for a SNR=100 or larger,

were easily recognized in the case of objects with well

defined edges, such as a white letter on a black background.

The reconstruction of the original object was very poor

in the case when the object did not have sharply defined edges

Since the state-space model developed works very effi-

ciently to deblur images affected by 2-D linear shift-

varying blurs, its use, in presence of noise needs to be

examined. An obvious approach would be to filter out the

additive noise, and, subsequently, obtain, recursively, the

restored object using the state-space model of the inverse

system, already developed. Specifically, let x(kl,k 2) be

the blurred image with additive noise,

x(kl,k 2 ) = s(kl,k 2 ) + n(kl,k 2 ) (5.95)

where s(kl,k 2 ) is the spatially-variant blurred image and

n(kl,k 2) is the additive noise. We want to filter out
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n(kl,k2) or in other words we want a satisfactory estimate,

s(klk 2), of the blurred image. From this obtained estimate,

s(k l k 2 ) , the deconvolution can be implemented, recursively,

via the developed state-space model. Some assumptions are

necessary before n(kl,k2 ) may be filtered out to satisfaction.

A stationary noise, {n(k l ,k2 )}, which is uncorrelated with

{S(kl,k 2)} and 'having known mean as well as correlation may

be assumed. The sequence, {s(klk 2 ) } originates from a spati-

ally blurred object and, therefore, it is inherently non-

stationary. We will assume that {s(kl,k 2)} is nonstationary

in the mean and also in the autocorrelation. Under these

assumptions, we feel that a solution to the filtering

problem could be obtained and a possible approach is outlined.

It is possible to transform {x(kl,k 2)} into an

approximately stationary process, (X(kl,k 2 )}, given by [5.23],

(kl = (k,k 2 ) + E(kl,k 2 ) (5.96)

where (t(kl,k 2 )} and {n(kl,k 2 )} are stationary and uncorrelated

and the mean and correlation of {n(kl,k 2 )} are computable

from those of {n(kl,k 2)}. From the process, fX(kl,k 2 ) 1 ,

an estimate, s(kl,k 2), of S(kl,k 2 ) is obtained. This is

possible to do via use of Wiener filtering theory. Next,

an inverse transformation to that employed in order to arrive

at (5.96) is applied to {S(klk 2 )} and an estimate s(kl,k 2)

of the original image s(kl,k 2 ) is obtained. It is pointed

out that if the noise is nonstationary, further assumptions

are necessary (like local stationarity) before a satisfactory

solution to the problem is expected.
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Linear Restoration of Bilinearly Distorted Image: Several

applications require restoration of bilinearly (a special

type of nonlinear map) distorted images. Some of these

applications and a procedure to restore bilinearly distorted

image in the presence of additive noise, by linear filtration

is considered in [5.24]. It is also known how 1-D bilinear

transformation (shift-invariant or special shift-variant) can

be computed by use of 2-D linear optical processors [5.25].

It has also been pointed out in [2, p. 219] that properties

of n-D bilinear systems can be inferred from the investigation

of similar properties in a 2n-D linear system. These inter-

relations between a bilinear and a higher dimensional linear

system suggest the necessity of investigating into the

possibility of restoring bilinearly distorted images using

the developed state-space model (of appropriate spatial

dimension) for linear shift variant systems.
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9 _ [g(),g(1),...,g(N-1)iT (3.10)

hen, the bilinear system description in (1.1), or (3.2), can be written as

BX - s (3.11)

herefore, the image restoration problem of interest here requires the finding of the

onnegative vector f which satisfies (3.7), (3.8) and (3.11).

Fact 3.1 : Let Q(n), h(n), n=0,1, • ,N-1, B, f, and 9 be, respectively, as in (3.4), (3.5), (3.6),

1.3), and (3.10) and h(n), n=0,1, - ,N-1 and f, 9 be nonnegative. Define an Nxl vector w,

those elements are given by,

(!AL) i  - , (3.12)

nd also define an NxN matrix U

h(0)
T

U h(1)T (3.13)

h(N)T

f is a solution of

Uf - w (3.14)

rien x obtained from f via (3.7) and (3.8) will be a solution of

Bx - 9. (3.15)

et the linear subspace R(BT) be defined as

R(BT) A fz : zBTy, yeRN) (3.16)

where RN denotes the N-dimensional Euclidean space. Then, the projection, x, of x on

I(BT) will satisfy

< (B)iT,- > - (*, i,12"•"N (3.17)

Proof (3.14) implies that

<h~i-),f> _ - (w)i.



3. Image Restoration From Noncausal Bilinear Blurring

In this section, the problem of restoring an image which is blurred by the bilinear
system described by (1.1), will be discussed. The (NxN) nonnegative matrix, Q(fl), is, first

d efined.

Q~) q(n;O,O) q(n;O,1) ** q(n;O,N-1)
0 ()~ q(n; 1,O) q(n; 1, 1) ... q(n;1,N-1) n=O, 1, o ,N- 1 (3.1)

q(n;N-1,O) q(n;N-1,1) ... q(n;N-1,N-1)1

Then, Q(n), n-O.1,* **,N-1, are symmetric matrices if y(m1 ,m2 ) in (1.2) is symmetric.

Assume that y(mI'm z) is symmetric [4, 6, 7, 131 throughout this section. With 0 j(n) in

(31,equation (1. 1) can be rewritten by

g(n) - fTa(n)f, n-0,, ,N-1 (3.2)

where

f (f(U),f( 1),** ,f(N- 1 )T (3.3)

If the system is completely coherent, then

Q(n) -h(n)h(n)T, n=,1, ,N-1 (3.4)

where

h(n) -(h(n;O),h(n; 1),. * 9 ,h(n;N- 1)]T nO1, N- 35

Let (A)1 denote the ith -row of A. Let,

(BiA i(-i) 1 (~ 1 )2 ,Qi N, i1,2, - ,N (3.6)

Xa ffT (3.7)

and

!- = IN ,(X) 7, * *(X)N ]T (3.8)

Then, using the usual Euclidean innerproduct notation. <,0>, (3.2) is expresseible as,

g(n) < (B)n~l T, x >, n-0,1,- *,N-1 (3.9)

Let
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has been done in [17]. For a (31x31) image, R0 < 0.0065 guarantees the occurrence of

the desired effect and for each segmented region, the support of hc(nl,nz;m1 ,m 2 ) is

obtained from:

hc(nl,nz;ml,mz) = nonzero , m 1 < n 1 and m2 < n z  (2.21)

0 , otherwise

Then, each segmented image is blurred bilinearly by using (2.13). Figure-5(a) shows the

original 31x31 image and Figure-5(b) shows the blurred image. To simulate the blurred

image, A in (2.19) has been chosen as 0.254. Also yz(m,,m7,L,,) in (1.2) is given by

Y z(m 1 ,m z,9. l,2' z) = sinc[(m l-t l)/Nh]sinc[(m - z)/Nh] (2.22)

where Nh is the maximum possible support width of hc(nl,nz;mi,mz) for any (nl,nz).

The system's coherent impulse response is given by

h2 (n 1 ,n,;m.m.) = /hc(nl,n 2 ;m-,-,m) (2.23)

Each function has been chosen to ensure the nonnegativity of the resulting DIR. By

applying the algorithm in Figure-1 to each segmented output quadrant image and by

combining those results, the original image is recovered as in Figure-5(c).



(15, 15) --- 430, 30>

(15, 15)

<15, 15 >

(0, 0)

<0, O>

(15, 15) (15, 15)

Figure - 3. Image Segmentation and Indexing in Coma Blur

x2

(0i 0) (4. 0h S e I R o

Figure -4. The Shape of Impulse Response of the Coma Aberration
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The recursive implementation analogous to (2.8), (2.9) and (2.10) also can be obtained.

Since (2.13) characterizes a quarterplane 2-D discrete system, row-by-row recursion, i.e.,

(n1 ,n,) * (n1 +l,n 2 ) . - (N-l,n,) - (O,nz+l) - (l,nz+l) - see, and the

column-by-column recursion are two of several possibilities for implementing the

recursion. The next equation provides the input/output description of 2-D discrete

bilinear system whose DIR has support in a nonsymmetric half-plane on (m1 ,m)-plane

or (Z A t )-plane.
ni N-1 nl N-i

y(n ,n 2 ) a E Z . . qZ(n 1 ,n 2 ;m ,mzt 1 , 2 )U(m 1 ,m 2 )U(Z,,,) (2.17)
m 1=Om z=O 2,O1 Z=0t

or,
N-1 nzN-1in

y(n,n),;mj,m,,£z)U(mmz)U(',,) (2.18)
m1 =Om 0Z1 =0, z=0

(2.17) can be solved recursively column-by-column, and (2.18) row-by-row.

To simulate the proposed algorithm, we synthesize a special type of noncausal bilinear

system by employing a coma type lens aberration as the system's coherent impulse

response. The coma aberration is described in (17, 23]. It will be briefly described here.

In the rectangular coordinate system, it is easy to explain this coma aberration by

segmenting the input support region into 4 quadrants as in Figure-3. And for each

segmented quadrant the index will be reordered the center point of the original input as

the origin, i.e., (0,0), of the each segmented Image. In Figure-3, <m1 ,m,> denotes the

original indeR of (31x31) original image and (m1 ,m,) the new index for each segmented

part. The point spread function, hc(nl,n 2 ;m 1 ,mZ), of the lens coma aberration is given

by 117]

hc(ninz;ml,mz) = [1/((m jA) 2 +(m A)2z ]h 0 (x,x,) (2.19)

where A denotes the sampling distance and

x, (mzn,+mzn)/(m 24+m 22 )

x2  , (mln2 -mzn)/(m, +m2
2 )

ho(x 1 'x2) (2C)//xz.,-3x z , (xl,xx)¢ I  (2.20)

(CIAx Ia-3x= 2- (Xx Z)Ell

and regions I and II are defined in Figure-4. From Figure-4, it is clear that by

constraining R0 to be less than a certain value, it is possible to ensure that the

ith-quadrant input, i-.1,2,3,4, does not affect the jth-quadrant (i'j) output. This analysis
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nw, (Z--. 4jCI0. k-1,2,- - ,N*

An q =(n;rn-a 
fq nm~n).4q(n;n,m)lf()
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- + q(k;n-l~n-I)fZ(f.1

)
?~ + 2 2 (k n -1) q(k;n -m ) f(m )f(l... 1 )

Yes kinn,n+ 1,** - .N- 1
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n- g(n){
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Suppose the values for f(m), m-0,1, * ,n-1, are known: then, An, Bn and Cn can be
computed by using (2.5), (2.6) and (2.7). Hence, f(n) may be obtained by solving (2.12).
Since all the coefficients, An, Bn and Cn, in (2.12) are nonnegative, the equation (2.12) has

*two real solutions, one of which is nonnegative and the other is negative. The

* nonnegative solution is assigned to f(n) and the recursion is continued. The flowchart for

* this is given in the Figure-i. In the Figure-i, the initialization Z=-1 will not be necessary
in this case. After recursion is completed, the desired nonnegative output, f(m),

m=O, 1, * e ,N- 1, is uniquely obtained.

Next, suppose that the elements of the DIR, are not all nonnegative. Then, the

inequalities (2.3) and (2.4) may not hold. To proceed, it is assumed that q(O;O,O)>O. The

flowchart in Figure-2, when embedded appropriately in the hatched box of Figure-i

provides a brute-force implementation of the solution f(m), m=0,1, 0 ,N-1, when this

14 solution exists.

For a 2-D discrete bilinear system, the counterpart of the expression in (2.1) is
n, n. n, n.

y(n 1,n 2) M= Z Z Z q nJnZMIm2 1ZZUMJM)~ '2 (2.13)
m =mm =0Z 1=02.2 0

e, * where all the notations are self-evident. The counterparts of (2.5), (2.6), (2.7) in this case
are given below.

Anj'n, q2(n1,n2;n1,n2,nj,nz) (2.14)

n1-1 n2-1

EBnn ( ,i n ;mqn ,n 2 2, , n M n,n .,m(,n Iu ,n2, 1 m)um, 2

n1-0

n 2-1
4 +E (q 2(n 1,n ;n 1,m,n 1,n 2)#q (n 1,n ;n 1,n 2,n ,m)lu(n l,m) (2.15)

n1-1 n2-1 n1-1,-
y*ln- ZE qE q(nn;mm 2 Ln)(n ,n ; ,m 2,9. ,m)u(m I'm )u(Z JA 2)m 1 0m2 I=L -o

-Z 0 ZEn(. ( 00 22 ;m f,1 t+ 2 n, 2 n 1 2, , )um, 2 un,.
ni-1nl- n 2-1

n2-1 n -1 n 2-1

It+ .( M7un,.
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2. Image Restoration From Causal Bilinear Blurring (Noise-Free Case)

An i-D discrete causal bilinear system will be represented by,

rg(n) aZ 2 q~n~m Lm 21 MM 1JmM 7) 21m 1=Om 70 LL

The case of nonnegative DIR will be considered first. Suppose that we are given g(n),
no0,1,e*,N-1 and q(n;m 1 ',), 0 '; MLm 2 ;< n, n=0,1,* ,N-1, and these are
nonnegative. The nonnegative input f(m), m=0,1,e * 9,N-1, is to be recovered. This can be[ done by rewriting (2.1) as

g(n) = q(n;n,n)f 2(n) + (2-1 (q(n;m,n)+q(n;n,m))f(m)lf(n)
n-1 n-i M =0

+ E Z q(n;m pm )fMM )fmM 2). (2.2)
m 1=0M 1=0

Since, for the noise-free case, q(n;m ,m 2) Z 0 and f(m) 0, therefore

*q(n;n,n)f 2(n) + 0{1 q(n;m,n)4q(n;n,m)jf(m)]f(n) > 0. (2.3)

From (2.2) and (2.3), the inequality in (2.4) follows.

g (n) -~~ pm 2'f~ J~~ 7 0. (2.4)

Let,

An q (n; n, n) (2.5)

Bn V {q(n;m,n)+q(n;n,m)lf(rn) (2.6)

Cn A n) - g(n) - 21q(n;m I'M )fM)fm ) (2.7)

C~n) n n m I mom 2=0Of2.

n can be obtained by implementing the following recursion.

C%) -= k-0, , ,n (2.8)

C1 k) . cjk-1) + [ 2 (q(n;m,k- 1)+"q(n;k-l1,m))f(m)]f(k- 1)

+ q(n;k-1,k-1)f 2 (k-1), ksl,2,.*, ,n (2.9)

* C~n (n) A n) (2.10)

From (2.4), (2.5), (2.6) and (2.7)

An ZnO 0, B0 (2.11)

The expression (2.2) can be rewritten in terms of An, Bn, and Cn by

Anf 2(n) +Bnf(n) -Cn 0 (2.12)
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h(n;m)= nonzero, m < n (1.12)

0 ,otherwise,

then it is easy to see that the system DIR will be of the form
q(n;m 1 ,m 2 ) =  nonzero , m1 < n and m < n (1.13)

0 , otherwise.

For the incoherent imaging system of patterns on the translucent scattering substrates,
the causality of the lens irradiance spread function and the substrate scattering function

will result in the system DIR of the form in (1.13). A physical realization of the causal

scattering substrate has not yet been reported. However, the example of the lens

irradiance spread function of the type in (1.12) can be formed as we shall see in section 2

by considering the lens coma aberration [17]. Since the irradiance spread function,

hc(n;m), of the lens is related to the system's coherent impulse response, from(1.4), by

hc(n;m) = Ih(n;m)l z , (1.14)

one can say that the support of h(n;m) is the same as that of hc(n;m).

In this paper, we will mainly study the original image intensity restoration from the

image intensity blurred by the system described by (1.1). For the restoration of the

bilinearly blurred images, nonlinear (18, 191 as well as linear methods (12, 20, 21, 22] have

been considered. The linear methods used for the restoration of a bilinearly blurred

image are successful in the incoherent case, but the restoration becomes

poor [18, 20, 21, 221 as the blurring system approaches the completely coherent case.

The nonlinear method [191 has been successfully applied to restore only those images

which are of low contrast following blurring by a coherent system.

A procedure to restore images blurred by completely coherent systems is described in

section 3. In several applications including the imaging system of patterns on the

translucent scattering substrate (131 and a portion of the diffraction-limited imaging

system [7] the characterizing DIR is nonnegative. Except in section 2 this nonnegativity
property of the DIR is assumed to hold. In section 2, a recursive scheme for restoring a

class of bilinearly blurred images is developed. In section 3, a technique for restoring a

wider class of bilinearly blurred images is considered. In section 4, the effect on the

quality of restoration due to the presence of additive noise is analysed.

"4 .- . . . . ' . ' . . . - - . . . . . .
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N-1
g(n) - E th(n;m)l 2 f(m)l z  (1.4)m-0

where g(n) and If(m)12 represent, respectively, the image intensity at n and the object

intensity at m. For the completely coherent case, in which the field's coherence function

is given by [4, 61

y(m,m 2 ) = 1 , for all m, and m2  (1.5)

we have

g(n) - IT-=h(n;m)f(m)12 . (1.6)
rn-0

The region falling between the two extremes of complete incoherence and complete

coherence is the region of partial coherence and the partially coherent system is

described by (1.1) and (1.2). When the following condition holds.

Y(m1 ,mZ) - y*(mZm 1 ) (1.7)

the field's coherence function is said to be symmetric and in that case the DIR

q(n;m J,m) is also symmetric. This implies that,

q(n;m,m 2 ) - q (n;m ,M1 ). (1.8)

When (1.8) holds and the input sequence is real, (11.1) is a hermitian form and, therefore,

can be written as

g(n) - Re[q(n;m ,m)Jf(m1 )f(m 2 ). (1.9)
m 1 -0m 2-

Hence, the imaginary part of the system's DIR doesn't contribute to the image formation.

In the imaging system of patterns on translucent scattering substrates (131, the DIR can

be given by

q(n;m ,m,) = (1/21[M(m l,m 2 )S(n;m l)+M(m 2,m 1)S(n;m z)] (1.10)

where M(m 1 ,m2 ) represents the substrate scattering function at surface point mL

resulting from a small illumination spot of unit power at surface point m and S(n;m) is
the lens irradiance spread function. From (1.10), we have

q(n;m 1 ,m,) - q(n;m 2 ,m,) (1.11)

and q(n;m 1 ,m2 ) always takes the real, positive value (131.

For the partially coherent imaging system, if the system's coherent impulse response

has the following support
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1. Introduction

A 1-D continuous bilinear transformation arises in the second order term of the Volterra

series representations of the nonlinear system (1, 2, 3, 4]. In the discrete domain, the 1-D

bilinear transformation with the finite support range input can be described as

N-1 N-1
g(n) - T .Z q(n;m 1 ,m 2 )f(m )f(m ) (1.1)

where (g(n)} and (f(m)) are, respectively, the output and input sequences, assumed real,

q(n;m 1 ,m 2) represents the system response at the output coordinate n due to two

impulses at the input coordinates m=m, and m-m., and N is the size of the input

support.

Recently, in the optical image processing area, this bilinear transformation has been

studied extensively to analyze the optical imaging system. These areas include the

partially coherent imaging system [4, 5, 6, 7, 8, 91. the magnification type X-ray imaging

system [10, 11, 121, and the incoherent imaging patterns on translucent scattering

substrates [13]. Ref[4] describes the general properties of the optical bilinear

transformation in detail. The relationship between the 1-D bilinear transformation and the

2-D linear transformation has been studied in [4, 14, 15, 161.

In the partially coherent imaging system and the projection type imaging

system [10, 111, the double impulse response (DIR), q(n;m 1 ,m,), of equation (1.1) can be

represented by

q(n;mL,mz) - h (n;m ,)h(n;m 2 )y(m,,m,) (1.2)

where h (n;m) denotes the complex conjugate of h(n;m), h(n;m) represents the system's

coherent impulse response at n due to the impulse at m and y(m1 ,mz) is the field's

coherence function. The term y(m 1 ,m 2 ) represents the correlation-like coefficient

between the object intensities at m i and m. The derivation of the expression (1.2) and

the further detailed informations about y(mL,m7) can be obtained in [6, 7, 8] and various

other related materials.

For the completely incoherent case, the light from each point in the object is assumed

to be statistically Independent of light from every other point [6]. Therefore, in this

case [4, 61,

Ky(mI,mz) = 1 ml=m z  (1.3)

0 ,otherwise

and, from (1.1),(1.2) and (1.3), we obtain

" . .- .6. .12 .. i i _1 22 1 . . 2 -2 : 2 .- i . i . -.
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On squaring both sides of the preceding equation, and then using successively (3.12), (3.4)

and (3.11), one obtains

i fTh(i-1)[h(i-1)]Tf

fTQ(i-1)f

- <(B)Tx> (3.18)

Therefore, if f is a solution of (3.14), then is a solution of (3.15).

To prove (3.17), x is decomposed as,

x = x + x (3.19)

where A R(BT) and x-N(B), where N(B) is defined as,

N(B) A {y: By'L yeRN }  (3.20)

since R(BT) in (3.16) and N(B) ara orthogonal complementary spaces with respect to RN.

Premultiplying B on both sides of (3.19),

Bx = Bx + Bx B^ (3.21)

But, by (3.15) the left-hand side is 1. Hence,

A

Bx (3.22)

and x satisfies (3.17).

The above Fact says that if the each row of the matrix B satisfies (3.4), (3.5) and (3.6),

then by forming a nonnegative vector w from 9 as in (3.12) and solving (3.14) for f, one

can restore the original image. When the nonnegative vector w is formed by (3.12), there

are 2 N possible ways to set the value (w) i from (9)i, i=1,2, * aN. But the negative sign of

any elements in w will violate the necessary condition for f to be nonnegative in (3.14).

Hence, w may be formed uniquely from q without violating the necessary condition that f

be nonnegative, by using (3.12). If h(i), i0,1,* *,N-1, are linearly independent, the

nonnegative solution f will be unique. For the completely coherent case, the matrix B in

(3.11) satisfies the condition in the Fact 3.1 by (1.2), (1.5) and (3.1). Therefore, one can

exactly recover the original image for this case provided that h(i), i=0,1,* - ,N-1, are

linearly independent.

AT

Due to the Fact 3.1, if the projection, x, on R(BT) of x is known, where B can be

6- , . . ' . i - ; . . . . . , .. . .
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represented by (3.4), (3.5) and (3.6), then the null space component, x of x can be obtained

from x so that x can satisfy (3.7) and (3.8). However, for the partially coherent system,

the matrix B generally does not satisfy the conditions in (3.4), (3.5) and (3.6). The Fact 3.1

will be adapted for use in the partially coherent case, by approximating the basis of R(BT)

to the form in (3.4), (3.5) and (3.6). To do this a few terminologies and well-known

Lemmas will be introduced.

Definition 3.1 : The Euclidean matrix norm of the matrix D will be denoted by IDII and

defined as

111311 A /Tr( DI (3.23)

where TrA denotes the trace of the square matrix A.

Definition 3.2 : Let S be the set of the matrices satisfying

S - (D: D=ddT , deRNI (3.24)

Then, we mean by "the best approximation of a matrix Q on S" the matrix D which

satisfies

Iia-3*ll -min IIQ-DII (3.25)

The above two definitions can be explained in other way. Let

a= [(Q) i,(Q) z," * ",(Q)N]T (3.26)

e - C(D) ,,(D)2, • .,(D)N ]T  (3.27)

4 where D=ddT, dCRN. Then, the best approximation of a matrix Q on S is seeking the

vector e which has the form in (3.27) and minimizing the usual Euclidean vector norm of
[a-e].

Definition 3.3 A matrix E is said to be idempotent if Ez=E.

4

The following Lemma 3.1 is well-known (261 and its proof will be omitted.

Lemma 3.1 Let Q be a NxN symmetric matrix witl distinct real eigenvalues, A .,*. 'r

* Then, the idempotents Ei, i- 1,2, 
• ,r having the properties

1) EiE = 0 if ij
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r
2) i Ei IN

r
3) Q = ZXiEi

exist, where IN denotes the NxN identity matrix. Moreover, Ei, i=1,2,. .,r are unique and
* Ei=viviT, where vi is the eigenvector of Q corresponding to Xi, i=1,2,.- -,r.

Lemma 3.2 : If E is idempotent, rank E - Tr E.

Proof : Since E is invariant under the square operation, the eigenvalues of E are 1 and 0.
Hence, the multiplicity of the 1 is the rank of E. But the sum of the eigenvalues of any
matrix is the trace of the matrix. Therefore, Tr E = rank E.

Then, we state the Theorem 3.1 and present its proof.

Theorem 3.1 : Let S be the set as in (3.24). Then, the best approximation, D, of a
symmetric nonnegative NxN matrix Q on S is given by

• T
XiE 1 = TXlylV (3.28)

where X , and v, are, respectively, the dominant eigenvalue and the dominant
eigenvector of the matrix Q and E denotes the dominant eigenspace of 0.

Proof : Suppose the rank of Q be r. Let the positive eigenvalues of Q be ordered in

such a way that

X1> xz> 040z Xp (3.29)

where p is the number of the positive eigenvalue, and the negative eigenvalues in such a
way that

Xp+l> .p+2. • Xr  (3.30)

Then,

* Xr+1=* * *=XN=0 (3.31)

Now, suppose that vi denote the orthonormalized eigenvectors of Q corresponding to Ai
i=1,2, * ,N. Then, v , YN form an orthonormal basis of RN. Let d be the vector
which minimizes

6

IQ-ddTII (3.32)

Then, d can be expressed as a linear combination of vi, i=1,2, 9 N.

..
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N
d Z Ilv (3.33)

Now,

IIQ.-dgTII2 = Trf(Q-ddT)T(Q-ddr)]I

= rQ 2 - Tr(Q(ddT1 Tr((ddr)Q] Trfdd].

Since

TrEQ(ddT)] Tr((ddT)Qi.

IIQ..ddIZ- = rt - 2Tr(Q(ddT)1 + Tr(ddT)2. (3.34)

By the Lemma 3.1,

TrQ2 
= r E] 2  r( X1 E.

Hence, by the Lemma 3.2,

TrQ 2 = E X zTrE. = E x 2  (3.35)
j i- i ~ i

For the second term in (3.34),

*e T (r rN N TTr[Q(gg )l Tr(Z xiv~v )(Zy.)(EckvT
i-lil 1 =hik=

=Tr(; Xiiv1)(T akv-k
1=1 - 1

r N kTr~vyiy
E Z Xaia
i lkkl

Since

Tr~viyk T ] (yi'yk) 1, i-k,

0,otherwise,

Tr(Ql(ddT) (3.36)

*For the third term in (3.34),

T N N

N 
Tji-lj=1 I

0N
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j aiN (3.37)

By substituting (3.35), (3.36) and (3.37) into (3.34), one obtains

z1Q ddTz r+ r N 4 o kz(lSjk)]

jai i=r1 jIlk i lJ

Let
r2
i -z(Xi-czi) I 0 (3.38)
N= 1

i=r+l 1 j-1k l k'ik)' 0 (339)

Then,

IQ-ddTliI2 + (3.40)

C , can be rewritten by

( Z.)2 + r )z ( (3.41)
-p+l

Let

a4. -(- t Z L, • IT> 0 (3.42)

By varying oL from (0,0,.-,0]", one can set the c. which minimizes c z+E V Starting

from [0,0,. .,0]1 , e is nondecreasing function of a as aIId increases. However, e is

decreasing. monotonically as IJIqJ increases from (0,0, • • ",0 ]T until _L reaches

a_ w (X zX 2,"" ",Ap0'. .• • .0T

Then, £F is increasing monotonically as 1ll increases. Based on these facts, one can*

conclude that the optimal o minimizing 1iQ-d.dT1 exists within the region formed by
10,0, * a .,0]T and [X 1,X 2,0 O",xp.0.,0•. . .0]T .

Suppose a'.1), , ,01 T Then.

[ (£I~z](1) - Xi 2 -x 12

Let

_(2 0,X 2,0,. .,O]T.

-. Then,
r

(E +F- 1(2) Z X,2_Z-2z
By cei=1

*ll By chtecking in this way, one obtains

r~:. . . . --.i. . -... .. . .i i. ..... . ..,. . . . . ... . .... .. . ... . . ....... .. -- -....-..
.- 

.. .-. .- ,.. . . . . .. . . . .. .

. . 1 . .. ,, . . ...... . . .. . . . . . . . . . . . . . . . . . . . . ." . .." . . . ..
-

". . . . . . . . . . . . . ..=' i " "I li "-i - i ," "'
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+ -]k X X 2 -x 2 .k12 P

i-i

* Hence, so tar. %0 is attained as the minimum. Now, let a~'~-[ 1 ) . OIThn

[C1 +C 1(1 ,2) . X 2 -(x 1 I~+XX

* Since

X Z'

For

_ - Oke Z) O,~O*. OXL.2. ,, 1 T, 1< k,I< p

1 X lXiz-(Xk .X,)+2XkX9, 2F-+C], 1 1

For ^'~L,M). the similar argument can be applied. By corntinuing these procedures until

Oa P, 1 . 2 .o ,, . ,]

s reached, one can show that

[E1+21 min(IQ-dJdT(2.

Therefore,

'3"3' "'3N =0Q~ (3.43)

wilt give the optimal vector d minimizing IIQ..ddTI But,

ddT - /X) Y/'T) _ X1E1.

Hence, the Theorem 3.1 has been proved.

The error resulted from the above approximation is given by

IIQ..ddTII -X X. (.4
1=2 (344

By applying the Theorem 3.1 to GOi), i=0,1,** *N-1 in (3.1), one will get 0() i_0,1,*
,N-1 which is nonnegative due to the Perron -Frobenius Theorem [24]. That is, the

A

nonnegativity of the system matrix B which is the approximate version of B in (3.11) is
A

maintained, while the each row of the matrix B satisfies the conditions (3.4), (3.5) and

* * (3.6) in the Fact 3.1.
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By combining the Fact 3.1 and the Theorem 3.1, the image restoration algorithm from
the partially coherent system can be obtained as follows:

Step 1) Obtain Nxl vectors di, i=0,1,, • °,N-1, by

9i a (3.45)

where Xi and v i denote, respectively, the dominant eigenvalue and eigenvector of GO)

Form N2 xl vectors ei, i=0,1, ,N-1, by

ei = [( i)) 1,(D( i)) 2, • • ,(D(i))N]T (3.46)

0() = didiT .  (3.47)

A

Step 2) Obtain the minimum norm solution, x, of (3.11).

Step 3) Obtain Nxl vector w by
(w~ = /eil' >' eiL'> > 0, i-1,2,•••*,N. (3.48)

0 , otherwise

IL Step 4) Solve NxN linear system Uf.w for f, where

U dT (3.49)

_dT
9-1

dN.l

Step 5) If the solution vector f has negative element, make it zero. Denote it f . Then,

f is the approximate solution.

By applying the above algorithm, one will have the squarred error of

.- l[g()_f*TQ(i)fa]z ( X (V:j.f*17]2 (3.50)=0u - - iw0 [g'i-1'i{(ijf.*}z z  3.0

where Xi. is the ith eigenvalue of Q(i) and vii is the th eigenvector of Q(i).

This error results from approximation of the range space of BT by a space satisfying
(3.4), (3.5) and (3.6). Figure-6 will help understanding their relationships. In Figure-6, the
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matrix E denotes the matrix resulting from the approximation of the matrix B in (3.11) by

applying the Theorem 3.1. The dotted curve represents the nonlinear space which

consists of the vector having the form defined in (3.7) and (3.8). Then, solving Uf=w in

the step 4) will correspond to seek a vector x on the dotted curve so that the projection

of x on R(ET) be 0'B. But, the true solution -0 is on the intersection of AD, which

represents the set of all (least squares) solution vectors of (3.11), and the dotted curve. If

the true projection of 00O on R(ET), that is, 0"C, is given, the true solution 07 can easily

be obtained. For the completely coherent case or the completely incoherent case, R(BT)

coincides with R(ET). Hence, the true projection O-C can be obtained only by computing

the minimum norm solution.

The innerproduct operation in the step 3) includes the projection operation of OA on

R(ET), that is, obtaining 0B. This step results in the error because the true projection of

OD on R(ET) is OC. The reason why the innerproduct operation in step 3) includes the

projection operation is following.

The projection of O'-A on R(ET) is represented by

O-B - (EtE)(OA)

since EtE is idempotent and the projection operator on R(ET) (25]. Suppose, now we

want to compute the value (E)(OB) to establish the system equation in the form of Ex-9

which is the approximated version of Bx= . Then,

(E)(OB) - (E)(E E)(OA) - (E)(OA)

since EEt E=E [25]. Since (E)(O-A) 'represents the innerproduct operation in step 3), this

step includes the orthogonal projection operation on R(ET).

One more thing to be noted is the possible negative values resulting from the

innerproduct operations in (3.48). In the proof of the Fact 3.1, the innerproduct result of

(3.18) never becomes negative because

< (a)i,_x > - < (B)i , x_ > - [<h0i),d>]2 > 0

But, for the partially coherent case, since R(BT) does not exactly coincide with R(ET), the

first equality in the above expression doesn't hold. That is,

< (E)i, x > i. < (E)i, x > + < (E)i, x >
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since xmay contain the component belonging to R(ET). Hence, if the error in (3.43) is

sufficiently small, then x can be said to belong to N(E). Hence, the innerproduct values in

step 3) have to be nonnegative.

The 2-0 bilinear system representation corresponding to (1.1) is given by

N-1 T-i T-i N-1y~1n) M (3.51),n;mmi~

Initially the following form of the 2-0 DIR is considered.

q (n 1,n 7;M 1,M2 ', 1 ) = q(n 1;ml,9.,)q(n;m, 2) (3.52)

In the KO'hler illumination system [7J with an incoherent square source, the 2-D field's

coherence function is of the form,

YZ(M 1,M2 1 ,L92) = Y(m1,9.1 Y(M2,JL2) (3.53)

where y(m,9,) - C1 sinc(C~ (m-E)] and C I and C2. are constants. It is well-known [7]

that the Fraunhofer diffraction pattern for a square aperture results in a product separable

form of the coherent impulse response, i.e., the 2-D3 counterpart of h(n;m) in (1.2) is of

the form,

h,(n 1,n,;m 1,m2) M h(n ;m I)h(n Z;m) (3.54)

where h(n;m) - C3 *sinc[C,,*(n-m)] and C3 and C, are constants. Hence the optical

microscopic imaging system of the square incoherent source will have a DIR of the form

i n (3.5 2).

When the 2-D DIR is as in (3.52), (3.51) can be rewritten as

N-i N-i N-i N-1
y(n1 ,n2.) -Z E E . q(n ;mA,R.)q(n 2.1m ,9.2 )u(m ,m )u(i .1,1 2)

M= -a l 1O 0

N-iN-1 N-1 N-i
M a q(n;M,lz)z q(n 1;mI tIMM 1,M 2)U(i 1'9'2)

n- q(n 2 ;M ,R. 2)w(n 1;m . 12) (3.55)

where

w(n1;M2,t2 ) A q(n1;m1 ,)U(M 1,M2)u('1 ,Z2 ). (3.56)

The minimum norm solution, w(n1;m,L 2), nj=O,i,e*,N-i, can be obtained via the

application of s-tep 2) in the 1-D algorithm. Define,
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Figure -6 Range Space Approximation
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q(n,0.O) q(n ;0, 1) ... q(n ;0,N- 1)

Q(n 2) A q (n2;1,O) q(n 2;1, 1) *' q(n2;1,N- 1) n 2 M0.,* , ,N- 1 (3.57)

q(n2;N- 1,0)q(n ;N- 1, 1) @6q(n ;N- 1,N- 1)

Then, as in (3.45), by obtaining the dominant eigensystemn of Q(fl2), the Nxi vectors dn,.
n .10.,,o *,N-1, are obtained. For the fixed value of n , y(n ,n) can be obtained, from

dn and w(n 1;m 2,t2?), by

y(n 'n .) M 0 0 d(n 2;m .)d(n ; I )w(n 1;m 2.9. 2) (3.58)

where d(n;m) is the mth-element value of the vector dn. By substituting (3.56) for
w,(n 1;m 2 . 2), (3.58) can be rewritten as, for n , 0,, **,N-i1,

V V- - N-1 N-1V~n ,n2) a qn ;M 11) E d(n ;rn )d(n 2 ; 2 )U(M 1 'M2 )U(9 1 '9'2 13.59)

Let

z(m 1An2) V A d(n z;rh 2)u(m ,m2) (3.60)

Then, (3.59) can be rewritten as,

Aa V (361

y(n1 ,n,2 ) is given in (3.58) and q(nl;m,,. 1 ) is also known. Hence, (3.61) is the 1-D
bilinear expression for the fixed value of n 2 . n2 ,,,*o* ,N-1. By applying the 1-D
algorithm to (3.61) for each value of n2 n .- 0. 1,* *,N- 1, z(m ,n2) m1  o, ,,i

obtained. Then, u(m 1,mz) can be solved for in (3.60). The 2-D algorithm with the
product separable form DIR is shown on Figure-?.

The algorithm in Figure-? is implemented with

h 2(n 1,n ;m ,,m ) - sinc[(n -m I)/Nhlsinc[(n 2 -m 2)/NhJ. n-m1Nh,i12 (.)

(0 .otherwise

where sincx-sin(7rx)]/(Tx), and

Y2=jm2j2 1 for all m pm 2 '1 1 A 2 1 (3.63)

Hence. Figure-8(b) shows the image blurred by the completely coherent optical system
with Nh -4 from the 31x3l original image in Figure-8(a). By applying the algorithm in
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Figure-7, the image shown in Figure-8(c) has been obtained. The algorithm results in the

exact image restoration. For the partially coherent image restoration, the image in

Figure-9(a) has been blurred by the system with h (n ,n ;m I,m) in (3.62) and

y 1(m 1 ,m z l' ) = sinc[(m ,- " 
1 )/N csinc [(m 2

-1 2 )/N c. (3.64)

The blurred image is shown on Figure-9(b). Nc has been chosen as 19. The restored

image in Figure-9(c) retains a little error since the blurring system belongs to the partially

coherent system close to the completely coherent case.

:- .. i -. ---. .......... o,-- : .-- -- -; --,, .., .- . . ------.- -,- -, - - . .
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Obtain NxI vectors dn .,n.=0,1,* *,N-1. by

/A2. n . Y 2 1

where Xn, and Yn 1 are the dominant

eigenvalue and eigenvector of Q(fl 2 )

Obtain the minimum norm solution, Wr(nL;M 2 ,.Z2 ), of
N-1 N-i

y(n ,n) E Z q(n 2;m 2 .L2 )w(n L;m 21 2
m 2=0.2=

Cornpute
N-i N-1

yZ T d(n ;m,,)d(n 7L) W(fImr)
yJn,n ) m 27 z

where d(n;m) is the mth-elemen~t value of dn.

nn+1 No n :N- 1

Yes n0

Obtain z(m ,n) from
A N-1 N-1i )zZ,

y(n .n) E q£ £ ~ ~~

by applying step 2) through step 5) of 1-0 algorithm.

nn+ No n,=N-1

Yes n ,=0O

Solve for u(n Ix 7)
N-1

Z(n j,n) a m n; .un

. ~ ~ r . = . . . 0 . . . . . . . . . ..)__
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4. Image Restoration From Noise Added Blurred Image

In this section the original image restoration from the noise added image following

bilinear blurring in (2.1) with nonnegative DIR will be considered. The blurred image with

additive noise can be described by

ng(n) =Z 2 q(n;m ,m 2 )f(m )f(m2) + v(n) (4.1)

m I-OM 2=0

where v(n) is a zero mean white gaussian noise. The bilinear blurring in (4.1) can be

recovered by applying the algorithm in Figure-1. But due to the noise effect the

nonnegativity condition in (2.4) may not be satisfied. Then, solving (2.12) recursively

might result in two negative solutions, or two complex solutions in addition to a

nonnegative solution with a negative one. The algorithm in Figure-1 will be adapted for

use in this case.

Suppose that nonnegative values for f(O), f(1), °  , f(n-1) have been obtained and

0 , i=1,2, °,n, k=i,i+1, • o 9,N-1. (4.2)

Since An Z 0 and Bn Z 0 due to the nonnegativity of q(n;m ,m2 ) and

Cn  C C(n) > 0 (4.3)

-due to (4.2), solving (2.12) for f(n) will result in one nonnegative solution, say s , and one

negative solution, s.. Let

f(')(n) = s . (4.4)

Using f(l)(n) in (4.4), Cjn + 1), k=n+l,n+2,. .,N-1 can be computed. If0

C +1) > 0, k=n+l,n+2,. * ,N-1 (4.5)

then

* f(n) = f(')(n) (4.6)

And one can proceed the algorithm to solve f(n.l).

If any of Cn +) turns out to be negative, say,

*CT+)<O, CT )O...,~+i.O (4.7)
1 2 r

then by choosing CT7' 1 as

0

--.. ...... ............-.... .. ............... ... .•- .-.-. --..... . . .--..--.... . :. . ::!,
- .. . . . . . . . ...- I-
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CT' min CT 1) CT .,T L) (4.8)

the output index ,. say 2.-1i, at which the largest modulus occurs among negative
C ni), k=Lz'," *,'r can be obtained. For C + 1) to be nonnegative. f(n) has to satisfy

C ) - C q(;n,n)f2 (n) + 2-1 (q(2,;n,m)+q(9,;m,n)}f(m)f(n) ] 2 0 (4.9)

where CT) > 0 by (4.3). Let 0<a ;5 1. Then, (4.9) can be rewritten by

n-1
q(9,;n,n)f 2 (n) + Z 0q(Z,;n,m)+q(9,;m,n)}f(m)f(n) - aCT),O. (4.10)

Choosing proper value for o and solving (4.10) for f(n) will result in f(Z)(n). By using this

f(2)(n), the nonnegativity of C n+ L), kn+1,n+2, ° * ,N-1, can be rechecked. Note that

= (1-Q)CT) a 0. (4.11)

If all the inequalities in (4.5) are satisfied by f()(n), then set

f(n) - f(Z)(n) (4.12)

I q@ and proceed the algorithm to obtain f(n+l). If any one or more of inequalities in (4.5) are

not satisfied by f(Z)(n), then, by repeating the above procedure until all the inequalities in

(4.5) can be satisfied, one can obtain a desired nonnegative f(n). It is easy to see that the
fC+n) will be reduced by, at least, one whenever the abovenumber of negative C

procedure is repeated. Hence, by repeating the above procedure at most r times, one can

obtain a nonnegative f(n) satisfying (4.5). This scheme is shown on Figure-10.

In the simulation SNR-30dB white gaussian noise is added to the blurred image in

Figure-5(b). The resulting noise added image is shown on Figure-i1(a). By choosing

OL0.5, the restored image in Figure-11(b) is obtained. The resulting SNR is 16dB.

~~~.. .... .. ..........-,.... ... .... .... -. .-. ....-...... °..,..................,.....,.-. ... . ..... .•
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Main Algorithm

t-o

f(t)(n)

Compute Cf +)

L 4 n) 2- fq(kvm,n)iq(kn,m))f(m)f(n)

n+1~ < k < N-1

f(t)(n)

Choosemn C +1) +<

C -slv torft)n

q(l;n,nflf(t)(n)12 * (q(;n~m)+q(L;m,n)f(M)f()(fl) 
- *T

Figure-l10. Supplementary Algorithm to Figure-i
to Recover the Noisy Blurred image
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4 g. Specific Applications Stemmuing from Research Report

Principal Investigator: Dr. N.K. Bose

(a) Primitive Factorization of Bivariate Polvnomial Matrices Over an Arbitrary
Field of Coefficients: Similar to the widespread use of irreducible matrix
fraction descriptions in the 1-D case, such representations in the 2-D case
are known to have g-eat potentials. An important outcome of the research
conducted has been the presentation of a primitive factorization theorem
for matrices of bivariate polynomials over an arbitrary but fixed field of
coefficients (1]. This, in turn, leads to a method for obtaining an ir-
reducible matrix fraction description for a matrix .of bivariate rational
functions over an arbitrary field. In fact the factorization results hold
not just for matrices over K(z,wl (K a field), but for matrices over Dw],
where D is an arbitrary Euclidean domain (or in theory, over a Principal
Ideal Domain). Importantly, the computations required to obtain the fac-
tors in K[z,w] depend neither on any extension field nor on the restric-
tion of algebraic closure, in contrast to earlier approaches.

The matrix fraction descriptions obtained are then used to study
stability of 2-D feedback systems where the plant and compensator each
corresponds to discrete 2-D causal or weakly causal multi-input/multi-
output systems. In particular, necessary and sufficient conditions are
obtained for an unstable plant to be stable and a classification of the
stabilizing compensators are given [2]. These results have proven and
potential applications since multidimensional feedback systems have been
proposed for various purposes like iterative image processing and restora-
tion 13,4]. Such image processing systems that contain feedback loops
are sometimes known to oscillate in space and time and these undesirable
oscillations can only be avoided if proper stability conditions are
imposed oa the feedback systems.

(b) Multidimensional Linear Shift-Variant (LSV) Systems: For any n-D discrete
positive cone causal (or weakly causal) LSV system, whose impulse response
is approximated by a K-th order degenerate sequence, a K-th order state-
space model is obtained [5]. This recursive state-space model is based on
a (2n-l)-points recurrence formula, which for the causal case uses the

* (2n-l)-closest neighboring "past" points in addition to the input in order
to compute any current output state. For the weakly causal case, the ( 2 n- l )
computed points required are not, in general, the closest neighbors to the
present output, which is being computed. Models for the 2-D LSV system and
its inverse can be used to perform analysis and deconvolution problems very
efficiently. Examples of physically motivated applications making use of

*. the theoretical results have been worked out. These applications include
effects of 1-D LSV motion blur and the blurring due to Seidel aberrations
of a lens; in particular, the 2-0 LSV coma aberration was studied in detail.
The reconstruction of the original object from the LSV blurred image was
carried out successfully by means of the state-space model for the inverse
system. There are several advantages of the approach adopted in this re-

- search. First, any impulse response sequence can be approximated arbit-
rarily closely by a K-th order degenerate sequence by increasing K. The
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,-ecursive impie=encaticn Is associared -;Ah reduced sace-:iZe
computational complexity, so that it is conceivable that degraded
images may be processed in real time, when necessary. Though, all
types of point-spread functions cannot be modeled via the recursive
state-space model, the flexibility provided by the weak causality
condition broadens considerably the scopes for applications. Some-
times even a noncausal point-spread function (as illustrated by coma

* aberration [51) can be decomposed suitably, the recursive model
*,.' applied to each part, and the results carefully superimposed to
* yield the correct solution. Extensions and applicability of the

results to image restoration subject to nonlinear (especially
bilinear) degrading phenomena in the presence of nonstationary
noise is currently being investigated.
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